Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Microbiology 2012-Mar

Evaluation of lactic acid bacterium from chilli waste as a potential antifungal agent for wood products.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
D R O'Callahan
T Singh
I R McDonald

Ključne besede

Povzetek

OBJECTIVE

The aim of this study was to isolate lactic acid bacteria from chilli waste and evaluate metabolites produced for the ability to arrest wood decay.

RESULTS

Using an optical density screening method, one bacterium (isolate C11) was identified as having pronounced antifungal properties against Oligoporus placenta. This isolate was identified as Lactobacillus brevis by 16S rRNA gene sequencing. To determine antifungal activity in wood, Pinus radiata blocks were impregnated with Lact. brevis [C11] cell-free supernatant and exposed to brown rot fungi O. placenta, Antrodia xantha and Coniophora puteana. The treated timber demonstrated resistance to degradation from all fungi. The antifungal metabolites were heat stable and not affected by proteinase K, but were affected by neutralization with NaOH suggesting the metabolites were of an acidic nature. The presence of lactic and acetic acid was confirmed by HPLC analysis.

CONCLUSIONS

Lactobacillus brevis [C11] produced acidic metabolites that were able to inhibit the growth of wood decay fungi and subsequent wood decay.

CONCLUSIONS

Traditional wood treatments are becoming an environmental issue as the public demands more benign options. The use of lactic acid bacteria which are considered safe for general use is a potential alternative to the conventional heavy metal chemicals currently in use.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge