Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological Trace Element Research 2011-Jun

Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Mini Aggarwal
Suchi Sharma
Navneet Kaur
Dhirender Pathania
Kalpna Bhandhari
Neeru Kaushal
Ramanpreet Kaur
Kamaljit Singh
Alok Srivastava
Harsh Nayyar

Ključne besede

Povzetek

Bean (Phaseolus vulgaris L.) seedlings were subjected to varying selenium levels (1, 2, 4, and 6 ppm) in a hydroponic culture. The germination reached 100% in 48 h in all Se levels except 6 ppm, where it took 72 h. The root and shoot growth was stimulated at 1 and 2 ppm Se levels that was commensurate with increase in chlorophyll content, leaf water content, and cellular respiration. At 4 and 6 ppm Se levels, the growth was inhibited appreciably, which was associated with increase in stress injury measured as damage to membranes and decrease in cellular respiration, chlorophyll, and leaf water content. The oxidative injury as elevation of lipid peroxidation was larger compared to hydrogen peroxide accompanied by reduced levels of enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbic acid and glutathione) antioxidants. Proline content was significantly higher at 1 and 2 ppm Se but diminished considerably at 4 and 6 ppm levels concomitant with the reduced growth. Exogenous application of proline (50 µM) resulted in substantiation of its endogenous levels that antagonised the toxic effects of Se by improving the growth of seedlings. The stress injury was reduced significantly with simultaneous increase in enzymatic and non-enzymatic antioxidants. Especially the components of ascorbate-glutathione cycle showed larger stimulation with proline application. The role of proline in mitigating the toxic effects of Se is discussed.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge