Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1983-Apr

Localization of enzymes and alkaloidal metabolites in Papaver latex.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
M F Roberts
D McCarthy
T M Kutchan
C J Coscia

Ključne besede

Povzetek

In continuing studies on the metabolic activity of Papaver somniferum, latex has been examined for its enzyme and alkaloidal metabolite content. After an initial centrifugation of latex at 1000g, the pellet which contained a heterogeneous population of dense organelles was further resolved on sucrose gradients. Of the enzymes monitored, acid phosphatase and L-3,4-dihydroxyphenylalanine decarboxylase were found to be in the latex 1000g supernatant, whereas catecholase (polyphenolase) was localized in two distinct organelles within the 1000g sediment. The lighter organelles, sedimenting at 30% sucrose, contained a soluble enzyme which was readily released on organelle plasmolysis, whereas the catecholase found within the heavier organelles, sedimenting at 55-60% sucrose, was membrane bound and showed significant activity only in the presence of Triton X-100. These latter organelles also contained the alkaloids, including morphine and thebaine, and were observed to readily accumulate [14CH3]morphine. The alkaloid precursor, dopamine, was localized in the same dense vesicle fraction as the alkaloids. The rate of uptake of [7-14C]dopamine into these fractions at room temperature, however, was markedly lower than that of morphine. Electron microscopic examination of the organelles of various densities revealed that they possessed different morphology. The results are consistent with the concept that both the 1000g and supernatant fractions of the latex are required for alkaloid biosynthesis and that a subpopulation of dense organelles found in the 1000g sediment have at least a function as a storage compartment for both alkaloids and their catecholamine precursor.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge