Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2015-Oct

Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Geetika Sirhindi
Mudaser Ahmad Mir
Poonam Sharma
Sarvajeet Singh Gill
Harpreet Kaur
Ruquia Mushtaq

Ključne besede

Povzetek

Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge