Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Antiviral Research 1997-Dec

Molecular mechanisms in retrovirus DNA integration.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
E Asante-Appiah
A M Skalka

Ključne besede

Povzetek

The integrase protein of retroviruses catalyzes the insertion of the viral DNA into the genomes of the cells that they infect. Integrase is necessary and sufficient for this recombination reaction in vitro; however, the enzyme's activity appears to be modulated in vivo by viral and cellular components included in the nucleoprotein pre-integration complex. In addition to integrase, cis-acting sequences at the ends of the viral DNA are important for integration. Solution of the structures of the isolated N- and C-terminal domains of HIV-1 integrase by nuclear magnetic resonance (NMR) and the available crystal structures of the catalytic core domains from human immunodeficiency virus type-1 (HIV-1) and avian sarcoma virus (ASV) integrases are providing a structural basis for understanding some aspects of the integration reaction. The role of the evolutionarily conserved acidic amino acids in the D,D(35)E motif as metal-coordinating residues that are critical for catalysis, has been confirmed by the metal-integrase (core domain) complexes of ASV integrase. The central role that integrase plays in the life cycle of the virus makes it an attractive target for the design of drugs against retroviral diseases such as AIDS. To this end, several compounds have been screened for inhibitory effects against HIV-1 integrase. These include DNA intercalators, peptides, RNA ligands, and small organic compounds such as bis-catechols, flavones, and hydroxylated arylamides. Although the published inhibitors are not very potent, they serve as valuable leads for the development of the next generation of tight-binding analogues that are more specific to integrase. In addition, new approaches are being developed, exemplified by intracellular immunization studies with conformation-sensitive inhibitory monoclonal antibodies against HIV-1 integrase. Increased knowledge of the mechanism of retroviral DNA integration should provide new strategies for the design of effective antivirals that inhibit integrase in the future.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge