Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rice 2016-Dec

Physiological Responses and Expression Profile of NADPH Oxidase in Rice (Oryza Sativa) Seedlings under Different Levels of Submergence.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Yu-Sian Wu
Chin-Ying Yang

Ključne besede

Povzetek

BACKGROUND

Flooding due to global climate change is a serious problem that frequently decreases crop yields. Rice fields in flood-prone areas often experience full or partial submergence. Submergence has an adverse effect on internal oxygen availability, sugar status and survival. Complete submergence imposes severe pressure on plants, principally because the excess water in their surroundings deprives them of certain basic resources such as oxygen, carbon dioxide and light for photosynthesis. To better understand the mechanisms involved under different levels of flooding, it is necessary to further observe physiological responses and to identify the Rboh genes involved and determine how they are regulated during submergence.

RESULTS

In this study, significant physiological changes were observed in plant height, leaf sheath elongation and chlorophyll a, b and total content under partial and full submergence treatments. Senescence-regulating genes were severely affected under full submergence. Additionally, intracellular oxidative homeostasis was disrupted by overproduction of H2O2 and O2 (-), which affected cell viability and antioxidant enzyme activity, under different levels of submergence. Quantitative RT-PCR analyses revealed that complex regulation of Rboh genes is involved under different levels of submergence.

CONCLUSIONS

Our results demonstrated that the effect of physiological and the transcript levels of OsRboh genes were presented different responses to different levels of submergence in rice seedlings. There have different mechanism in intracellular to response different levels of submergence. Finally we discuss effects of the regulation of OsRboh expression and ROS production which was important to maintain homeostasis to help rice seedlings face different levels of submergence.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge