Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1993-Dec

Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
T A Walsh
J A Strickland

Ključne besede

Povzetek

The protein crystals found in potato (Solanum tuberosum L.) tuber cells consist of a single 85-kD polypeptide. This polypeptide is an inhibitor of papain and other cysteine proteinases and is capable of binding several proteinase molecules simultaneously (P. Rodis, J.E. Hoff [1984] Plant Physiol 74: 907-911). We have characterized this unusual inhibitor in more detail. Titrations of papain activity with the potato papain inhibitor showed that there are eight papain binding sites per inhibitor molecule. The inhibition constant (Ki) value for papain inhibition was 0.1 nM. Treatment of the inhibitor with trypsin resulted in fragmentation of the 85-kD polypeptide into a 32-kD polypeptide and five 10-kD polypeptides. The 32-kD and 10-kD fragments all retained the ability to potently inhibit papain (Ki values against papain were 0.5 and 0.7 nM, respectively) and the molar stoichiometries of papain binding were 2 to 3:1 and 1:1, respectively. Other nonspecific proteinases such as chymotrypsin, subtilisin Carlsberg, thermolysin, and proteinase K also cleaved the 85-kD inhibitor polypeptide into functional 22-kD and several 10-kD fragments. The fragments obtained by digestion of the potato papain inhibitor with trypsin were purified by reverse-phase high-performance liquid chromatography, and the N-terminal amino acid sequence was obtained for each fragment. Comparison of these sequences showed that the fragments shared a high degree of homology but were not identical. The sequences were homologous to the N termini of members of the cystatin superfamily of cysteine proteinase inhibitors. Therefore, the inhibitor appears to comprise eight tandem cystatin domains linked by preteolytically sensitive junctions. We have called the inhibitor potato multicystatin (PMC). By immunoblot analysis and measurement of papain inhibitory activity, PMC was found at high levels in potato leaves (up to 0.6 microgram/g fresh weight tissue), where it accumulated under conditions that induce the accumulation of other proteinase inhibitors linked to plant defense. PMC may have a similar defensive role, for example in protecting the plant from phytophagous insects that utilize cysteine proteinases for dietary protein digestion.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge