Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience Research 2013-Jun

Sulfiredoxin-1 protects PC12 cells against oxidative stress induced by hydrogen peroxide.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Qiong Li
Shanshan Yu
Jingxian Wu
Yanyang Zou
Yong Zhao

Ključne besede

Povzetek

Oxidative stress results in protein oxidation and is implicated in cerebral disease, such as Parkinson's disease, Alzheimer's disease, and ischemic stroke. Sulfiredoxin-1 (Srxn1) is an endogenous antioxidant protein that has neuroprotective effects. The mechanisms of Srxn1 in oxidative stress have not been well studied, however. This study used 180 μM H2 O2 exposure for 24 hr to model oxidative stress. This experimental design allowed us to explore the protective effects and underlying mechanisms of Srxn1 in PC12 cells. To investigate Srxn1's role in oxidative stress protection, transient knockdowns of Srxn1 in PC12 cells were performed prior to treatment with 180 μM H2 O2 for 24 hr. Knockdown of Srxn1 resulted in decreased cell viability and increased cellular damage as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehyrogenase analysis, respectively. Intracellular superoxide dismutase and glutathione are important indexes of oxidative stress; these were reduced in Srxn1 knockdown PC12. We further found that the decreased Srxn1 correlated with a reduction in 2-Cys Prdxs activity. Moreover, 2-Cys Prdxs protein levels were increased in the H2 O2 -dosed cells, as measured by RT-PCR and immunoblot analysis. These results suggested that Srxn1 can protect PC12 cells from H2 O2 -induced oxidative stress and are involve in Prdxs activity. Srxn1 play a protective role against oxidative injury and demonstrates potential as a target for neuroprotective intervention in oxidative stress.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge