Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2020-Jun

Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Farzad Kianersi
Mohammad Abdollahi
Asghar Mirzaie-Asl
Dara Dastan
Faiza Rasheed

Ključne besede

Povzetek

Capparis spinosa is an edible medicinal plant which is considered as an excellent source of rutin. Rutin is a glycoside of the flavonoid quercetin that has been reported to have a beneficial role in controlling various diseases such as hypertension, arteriosclerosis, diabetes, and obesity. In this study, the partial cDNA of four genes involved in the rutin biosynthetic pathway including 4-coumaroyl CoA ligase (4CL), flavonoid 3'-hydroxylase (F3'H), flavonol synthase (FLS) and flavonol-3-O-glucoside L-rhamnosyltransferase (RT) were identified in C.spinosa plants for the first time. The protein sequences of these genes shared high similarity with the same proteins in other plant species. Subsequently, the expression patterns of these genes as well as rutin accumulation in C.spinosa leaves treated with different concentrations of salicylic acid (SA) and methyl jasmonate (MeJA) and also in different tissues of Caper plants treated with 100 mgL-1 SA and 150 μM MeJA were evaluated. The expression of all four genes was clearly up-regulated and rutin contents increased in response to MeJA and SA treatments after 24 h. The highest rutin contents (5.30 mgg-1 DW and 13.27 mgg-1 DW), as well as the highest expression levels of all four genes, were obtained using 100 mgL-1 SA and 150 μM MeJA, respectively. Among the different tissues, the highest rutin content was observed in young leaves treated with 150 μM MeJA, which corresponded to the expression of related genes, especially RT, as a key gene in the rutin biosynthetic pathway. These results suggest that rutin content in various tissues of C. spinosa can be enhanced to a significant extent by MeJA and SA treatments and the gene expression patterns of rutin-biosynthesis-related genes are regulated by these elicitors.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge