Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2020-Jan

Linking shifts in species composition induced by grazing with root traits for phosphorus acquisition in a typical steppe in Inner Mongolia.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Povezava se shrani v odložišče
Rui-Peng Yu
Wei-Ping Zhang
Ying-Chai Yu
Shu-Bing Yu
Hans Lambers
Long Li

Ključne besede

Povzetek

Long-term overgrazing tends to cause soil phosphorus (P) deficiency in grasslands. The relationships between grazing-induced shifts in species composition and root traits associated with P acquisition involved in these shifts remain unknown. Species vary in their P-acquisition strategies, and we hypothesize that species that acquire P more efficiently are better adapted to overgrazing. We measured relative biomass, root physiological activities (e.g., rhizosheath acid phosphatase activity (Apase), and leaf manganese concentration ([Mn]) as a proxy for carboxylate concentrations in rhizosheath) and morphological traits (e.g., specific root length) of six common species in a field experiment conducted in a typical steppe of Inner Mongolia. There were two exclosure demonstration plots, i.e. exclosed since 1983 and 1996, and long-term free grazing without exclosure of sheep. Long-term overgrazing caused a reduction in bulk soil Olsen P concentration and increased community-weighted leaf nitrogen: P ratio by 27% and 37%, respectively, indicating more severe P limitation for steppe vegetation. Carex duriuscula exhibited an inherently greater specific root length, proportion of fine roots and rhizosheath Apase than other species did in both exclosure and grazing treatments. Cleistogenes squarrosa showed a greater leaf [Mn] induced by overgrazing. The increased dominance of C. duriuscula and C. squarrosa was positively correlated with finer roots, greater rhizosheath Apase or carboxylate release under long-term overgrazing. Species that had inefficient root traits for P acquisition (e.g., low specific root length and low leaf [Mn]), i.e. Stipa grandis, exhibited a decreased dominance in response to overgrazing. Dominance of species did not change under grazing which may be related to either relatively inefficient inherent morphological (i.e. in Artemisia frigida) or physiological traits (i.e. in Leymus chinensis and Agropyron michnoi) for P acquisition. Our study highlights the importance of acknowledging root traits involved in efficient P acquisition for theories on community succession induced by overgrazing.

Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge