Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

anthocyanidin/soja

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
10 rezultatov
Anti-inflammatory and antiproliferative activities of anthocyanidins and anthocyanin-rich black soybean seed coats were studied in HT-29 human colon adenocarcinoma cells and carcinogen-treated F344 rats, respectively. Cyanidin and delphinidin significantly inhibited cell growth at concentrations of

Pigmented Soybean (Glycine max) Seed Coats Accumulate Proanthocyanidins during Development.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The dominant I gene inhibits accumulation of anthocyanin pigments in the epidermal layer of soybean (Glycine max) seed coats. Seed-coat color is also influenced by the R locus and by the pubescence color alleles (T, tawny; t, gray). Protein and RNA from cultivars with black (i,R,T) and brown (i,r,T)
Anthocyanidin reductase (ANR; EC 1.3.1.77) catalyzes a key step in the biosynthesis of proanthocyanidins (PAs; also known as condensed tannins), flavonoid metabolites responsible for the brown pigmentation of seeds. Here, two ANR genes (ANR1 and ANR2) from the seed coat of brown soybean (Glycine max
BACKGROUND The R locus controls the color of pigmented soybean (Glycine max) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (iRT) and brown (irT) soybean (Glycine max) were known to differ by the
MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting
The seed coats of black soybean (Glycine max (L.) Merr.) accumulate red (cyanidin-), blue (delphinidin-), purple (petunidin-), and orange (pelargonidin-based) anthocyanins almost exclusively as 3-O-glucosides; however, the responsible enzyme has not been identified. In this study, the full-length

LDL-antioxidant pterocarpans from roots of Glycine max (L.) Merr.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The methanolic root extract of Glycine max (L.) Merr. was chromatographed, which yielded 10 flavonoids, including three isoflavones 1-3, five pterocarpans 4-8, one flavonol 9, and one anthocyanidin 10. All isolated compounds were examined for LDL-antioxidant activities using four different assay
Cyclic GMP (cGMP) is an important signaling molecule that controls a range of cellular functions. So far, however, only a few genes have been found to be regulated by cGMP in higher plants. We investigated the cGMP-responsiveness of several genes encoding flavonoid-biosynthetic enzymes in soybean
The pigmented seed coats of several soybean (Glycine max (L.) Merr.) plant introductions and isolines have unusual defects that result in cracking of the mature seed coat exposing the endosperm and cotyledons. It has previously been shown that the T (tawny) locus that controls the color of trichomes

Transcriptomic variation in proanthocyanidin biosynthesis pathway genes in soybean (Glycine spp.).

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
BACKGROUND Proanthocyanidins are oligomeric or polymeric end products of flavonoid metabolic pathways starting with the central phenylpropanoid pathway. Although soybean (Glycine spp.) seeds represent a major source of nutrients for the human diet, as well as components for the cosmetics industry as
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge