Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

arginase/arabidopsis thaliana

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
14 rezultatov

Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Arabidopsis possesses two arginase-encoding genes, ARGAH1 and ARGAH2, catalysing the catabolism of arginine into ornithine and urea. Arginine and ornithine are both precursors for polyamine biosynthetic pathways. We observed an accumulation of ARGAH2 mRNA in Arabidopsis upon inoculation with the

Nucleotide sequence of Arabidopsis thaliana arginase expressed in yeast.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava

The Neighboring Subunit Is Engaged to Stabilize the Substrate in the Active Site of Plant Arginases

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Arginine acts as a precursor of polyamines in plants in two known pathways, agmatine and ornithine routes. It is decarboxylated to agmatine by arginine decarboxylase, and then transformed to putrescine by the consecutive action of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase.

Roles of conserved residues in the arginase family.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Arginases and related enzymes metabolize arginine or similar nitrogen-containing compounds to urea or formamide. In the present report a sequence alignment of 31 members of this family was generated. The alignment, together with the crystal structure of rat liver arginase, allowed the assignment of

Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an

Biochemical and functional characterization of an atypical plant l-arginase from Cilantro (Coriandrum sativam L.).

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Arginase is one of the key enzymes responsible for maintaining the essential levels of nitrogen among plants, but biochemical and functional characterization of arginase among plants is limited. While screening for stable plant arginase, we found cilantro possessing an abundant and stable arginase.

Arginase induction represses gall development during clubroot infection in Arabidopsis.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has

Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux,

Dual functioning of plant arginases provides a third route for putrescine synthesis.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Two biosynthetic routes are known for putrescine, an essential plant metabolite. Ornithine decarboxylase (ODC) converts ornithine directly to putrescine, while a second route for putrescine biosynthesis utilizes arginine decarboxylase (ADC) to convert arginine to agmatine, and two additional

Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
In Arabidopsis thaliana, urease transcript levels increased sharply between 2 and 4 d after germination (DAG) and were maintained at maximal levels until at least 8 DAG. Seed urease specific activity declined upon germination but began to increase in seedlings 2 DAG, reaching approximately 75% of
We describe the identification and functional characterization of two Arabidopsis mitochondrial basic amino acid carriers (BAC), AtmBAC1 and AtmBAC2, which are related to the yeast ornithine (Orn) carrier Ort1p, also known as Arg11p. The arg11 mutant requires arginine (Arg) supplementation because

Identification and characterization of proteins involved in rice urea and arginine catabolism.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease
The hypertrophy and hyperplasia of infected roots into clubs are the intrinsic characteristics of clubroot, one of the economically most important diseases in Brassica crops worldwide. Polyamines, arginine (Arg)-derived metabolites, have long been recognized as cell proliferation and differentiation

Urea metabolism in plants.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge