Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

brefeldin a/krompir

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
10 rezultatov

The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore
APase activity is involved in regulating many physiological and developmental events by affecting the resorption process. In this study, we investigate the role of APase activity in tuber development in potato. APase activities were mainly localized in cytoplasm, gaps among cells and stroma of

O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Sporamin, a vacuolar protein of the sweet potato, is synthesized as a precursor that contains signal peptide and an N-terminal propeptide that functions as a vacuolar targeting determinant. Sporamin, when expressed in tobacco cells, migrated as smeared bands on an SDS-polyacrylamide gel. The

The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Potato virus X (PVX) TGBp3 is required for virus cell-to-cell movement. Cell-to-cell movement of TGBp3 was studied using biolistic bombardment of plasmids expressing GFP:TGBp3. TGBp3 moves between cells in Nicotiana benthamiana, but requires TGBp1 to move in N. tabacum leaves. In tobacco leaves

Recycling of Solanum sucrose transporters expressed in yeast, tobacco, and in mature phloem sieve elements.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The plant sucrose transporter SUT1 (from Solanum tuberosum, S. lycopersicum, or Zea mays) exhibits redox-dependent dimerization and targeting if heterologously expressed in S. cerevisiae (Krügel et al., 2008). It was also shown that SUT1 is present in motile vesicles when expressed in tobacco cells

Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed
An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition,
The potato blight pathogen Phytophthora infestans secretes effector proteins that are delivered inside (cytoplasmic) or can act outside (apoplastic) plant cells to neutralize host immunity. Little is known about how and where effectors are secreted during infection, yet such knowledge is essential

The Phytophthora infestans Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The oomycete potato blight pathogen Phytophthora infestans secretes a diverse set of proteins to manipulate host plant immunity. However, there is limited knowledge about how and where they are secreted during infection. Here we used the endoplasmic reticulum (ER)-to-Golgi secretion pathway
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge