Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

euonymus spraguei/triacylglycerol

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
10 rezultatov
The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored
Euonymus species from the Celastraceae family are considered as a source of unusual genes modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and

Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly
1,2-Diacyl-3-acetyl-sn-glycerols (ac-TAG) are unusual triacylglycerols that constitute the major storage lipid in the seeds of Euonymus alatus (Burning Bush). These ac-TAGs have long-chain acyl groups esterified at both the sn-1 and sn-2 positions of glycerol. Cell-free extracts of developing seeds
Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other
Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants.
The 3-acetyl-1,2-diacylglycerols (acTAG) are the molecules that are structurally similar to triacylglycerols (TAG). They are naturally produced by plants of the family Celastraceae and animals such as Cervus nippon and Eurosta solidaginis. The presence of acetate in the sn-3 position of the glycerol

Alterations in allocation and composition of lipid classes in Euonymus fruits and seeds

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The spindle tree (Euonymus europaeus L.) is a much-branched deciduous shrub or small tree. Its fruit capsules contain seeds with remarkably high content of oil interesting for industry, especially the 3-acetyl-1,2-diacyl-sn-glycerols (AcDAG) synthesized by a specific acetyl-CoA diacylglycerol

Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
BACKGROUND Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature

Comparative deep transcriptional profiling of four developing oilseeds.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge