Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

flavonol glycoside/arabidopsis thaliana

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 30 rezultatov

UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both
The flavonol branch of flavonoid biosynthesis is under transcriptional control of the R2R3-MYBs production of flavonol glycoside1 (PFG1/MYB12, PFG2/MYB11 and PFG3/MYB111) in Arabidopsis thaliana. Here, we investigated the influence of specific PFG transcription factors on flavonol distribution in
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it

The effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies
Tea possesses a distinctive flavor profile and can have health benefits owing to the high levels of flavonoids in its leaves. However, the mechanism of the flavonoid glycosylation hasn't been well studied in tea plants, especially glycosylation at the 7-OH site has rarely been reported. In this

Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a
Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1)
Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis
CONCLUSIONS We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10. Flavonoid biosynthesis is one of the
The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the
The genes MYB11, MYB12 and MYB111 share significant structural similarity and form subgroup 7 of the Arabidopsis thaliana R2R3-MYB gene family. To determine the regulatory potential of these three transcription factors, we used a combination of genetic, functional genomics and metabolite analysis
Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc,

Sclerotinia sclerotiorum Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Flavonols are widely distributed plant metabolites that inhibit microbial growth. Yet many pathogens cause disease in flavonol-containing plant tissues. We investigated how Sclerotinia sclerotiorum, a necrotrophic fungal pathogen that causes disease in a range of economically important crop
Screening of a cDNA library of the hop cv. Osvald's 72 and genomic cloning were used to isolate members of an oligofamily of chs_H1 genes that codetermine the biosynthesis of prenylated chalcones known to be valuable medicinal compounds present in hop (Humulus lupulus L.). chs_H1 oligofamily members
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge