Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glutamate decarboxylase/nekroza

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 19 rezultatov
Insulin, carboxypeptidase-H (CP-H), and glutamate decarboxylase (GAD) have been identified as potential autoantigens in insulin-dependent diabetes mellitus (IDDM). Previous studies have described immunoreactive insulin as a surface molecule on the plasma membrane of rat islet cells and suggested

Cytokine regulation of glutamate decarboxylase biosynthesis in isolated rat islets of Langerhans.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease in which cytokines are thought to play an important role in beta-cell destruction and immune regulation. A major target of beta-cell autoimmunity in IDDM is the enzyme glutamate decarboxylase (GAD). We hypothesized that cytokines in

Cytokine mRNA induction by interleukin-1beta or tumor necrosis factor alpha in vitro and in vivo.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Hypothalamic and cortical mRNA levels for cytokines such as interleukin-1beta (IL1beta), tumor necrosis factor alpha (TNFalpha), nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are impacted by systemic treatments of IL1beta and TNFalpha. To investigate the time course of the
OBJECTIVE Increased proinflammatory cytokines after myocardial infarction augment the progression of heart failure (HF) and are of prognostic significance. Recently, we demonstrated that increased proinflammatory cytokines in the brains of HF rats increased paraventricular nucleus (PVN) superoxide
beta-N-Oxalylamino-L-alanine (BOAA) is a dicarboxylic diamino acid present in Lathyrus sativus (chickling pea). Excessive oral intake of this legume in remote areas of the world causes humans and animals to develop a type of spastic paraparesis known as lathyrism. BOAA is one of several neuroactive

Therapies to Preserve β-Cell Function in Type 1 Diabetes.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
In spite of modern techniques, the burden for patients with type 1 diabetes mellitus will not disappear, and type 1 diabetes will remain a life-threatening disease causing severe complications and increased mortality. We have to learn of ways to stop the destructive process, preserve residual

Neurotoxic factors released by stimulated human monocytes and THP-1 cells.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Activated monocytes/macrophages are known to release toxic materials. Identification of these materials is important for developing more effective treatments for inflammatory disorders where self attack occurs. We stimulated human monocytes and THP-1 cells with LPS/IFNγ and measured the toxic
The neurotrophic activity of astrocytes and fibroblasts and its regulation by various cytokines were investigated. Astrocyte conditioned medium (ACM) enhanced the survival of neurons and the proliferation of astrocytes in embryonic cortical cultures grown in serum-free defined medium. However, these

Kainic acid induced seizures: neurochemical and histopathological changes.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Behavioural, histopathological and neurochemical changes induced by systemic injection of kainic acid (10 mg/kg, s.c.) were investigated in rats. The most pronounced behavioural changes were strong immobility ("catatonia"), increased incidence of "wet dog shakes", and long-lasting generalized
Recent studies indicate that systemic administration of tumor necrosis factor (TNF)-α induces increases in corticotrophin releasing hormone (CRH) and CRH type 1 receptors in the hypothalamic paraventricular nucleus (PVN). In this study, we explored the hypothesis that CRH in the PVN contributes to

Negative effects of chronic inflammatory periodontal disease on diabetes mellitus.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Periodontal disease is the result of a complex interplay of bacterial infection and host responses, and is often modified by various systemic diseases such as diabetes mellitus. Such diseases are capable of affecting the periodontium and/or the treatment of periodontal disease. However, recent

Kainic acid neurotoxicity; effect of systemic injection on neurotransmitter markers in different brain regions.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Systemic injection of kainic acid (12 mg/kg) induces necrosis and neuronal degeneration in several brain regions. The most pronounced effects were observed in the piriform cortex, amygdaloid complex, hippocampus and septum. A good correlation between morphological changes and changes in some
Proinflammatory cytokines, including tumor necrosis factor (TNF)-α, augment the progression of heart failure (HF) that is characterized by sympathoexcitation. In this study, we explored the role of TNF-α in hypothalamic paraventricular nucleus (PVN) in the exaggerated sympathetic activity observed
The expression of a large panel of selected genes hypothesized to play a central role in post-traumatic cell death was shown to be differentially altered in response to a precisely controlled, mechanical injury applied to an organotypic slice culture of the rat brain. Within 48 h of injury, the
Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge