Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

melatonin/arabidopsis thaliana

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 27 rezultatov

Melatonin Antagonizes Jasmonate-Triggered Anthocyanin Biosynthesis in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
As a plant-specific flavonoid type metabolite, anthocyanin is an important plant-sourced nutrition. Although the anthocyanin biosynthesis pathway has been revealed, how to modulate anthocyanin production by endogenous molecules is still elusive. Here, we investigated the role of melatonin in
Although accumulating evidence demonstrates the cross talk between melatonin and auxin as derivatives of tryptophan, the underlying signaling events remain unclear. In this study, we found that melatonin and auxin mediated the transcriptional levels of zinc finger of Arabidopsis thaliana (ZAT6) in a
Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response
Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through
Since the discovery of melatonin in plants, several roles have been described for different species, organs, and developmental stages. Arabidopsis thaliana, being a model plant species, is adequate to contribute to the elucidation of the role of melatonin in plants. In this work, melatonin was
Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including

Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant defenses against a variety of biotic and abiotic stresses, including UV-B stress. Molecular mechanisms underlying functions of melatonin in plant UV-B responses are poorly understood. Here we show that melatonin effect on

Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in

Role of melatonin in alleviating cold stress in Arabidopsis thaliana.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Melatonin (N-acetyl-5-methoxytryptamine) has been implicated in abiotic and biotic stress tolerance in plants. However, information on the effects of melatonin in cold-stress tolerance in vivo is limited. In this study, the effect of melatonin was investigated in the model plant Arabidopsis thaliana
Melatonin influences plant innate immunity through the mitogen-activated protein kinase (MAPK) pathway. However, the most upstream MAPK component in melatonin signaling and the dependence of generation of a reactive oxygen species (ROS) burst on melatonin synthesis and signaling remain unclear. In
Melatonin is a potent naturally occurring reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenger in plants. Melatonin protects plants from oxidative stress and, therefore, it improves their tolerance against a variety of environmental abiotic stressors.
CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis. High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant developmental growth, especially in root architecture. The similarity in both chemical structure and biosynthetic pathway suggests a potential linkage between melatonin and auxin signaling. However the molecular mechanism
The transition from vegetative to reproductive growth is a key developmental event in a plant's life cycle. The process is mediated by a combination of phytohormones, including melatonin (MT) and strigolactone (SL). Here, the Arabidopsis mutants, d14-1 and max4-1, which are compromised with respect
Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana.
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge