Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

methyl jasmonate/krompir

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 79 rezultatov
The 22 kDa Kunitz-type potato proteinase inhibitor (22 kDa KPPI) was induced in tubers. However, the 27 kDa protein, which is immunologically related to the 22 kDa KPPI, was induced in leaves by wounding, hormones, and environmental stresses. The leaf-specific 27 kDa protein was induced in leaves
To address the question whether common signal(s) and transduction pathways are used to mediate a systemic wound response in monocot and dicot plants, a fusion of the potato proteinase inhibitor II gene (pin2) promoter and the bacterial beta-glucuronidase gene (Gus)-coding region was introduced into
The potato proteinase inhibitor II promoter was studied to identify cis-acting regulatory sequences involved in methyl jasmonate (MJ) response using transgenic tobacco plants carrying various lengths of the promoter fused to a chloramphenicol acetyltransferase reporter gene. An internal fragment
BACKGROUND During potato storage the tubers tend to develop off-flavours, mainly due to lipid-derived aldehydes, whose formation is increased after boiling or processing. This may become a problem when boiled or precooked potatoes are used. Methyl jasmonate (MJ) is a phytohormone capable of
Induction of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR; EC 1.1.1.34) is essential for the synthesis of steroid derivatives and sesquiterpenoid phytoalexins in solanaceous plants following mechanical injury or pathogen infection. Gene-specific probes corresponding to different HMGR genes
The behavioral responses of the potato tuberworm moth Phthorimaea operculella and the polyphagous predator Orius insidiosus to volatiles emanating from exposed tubers were studied by four-arm olfactometer bioassays. Mated females of P. operculella distinguished volatiles released by intact potato

Cloning and expression of soluble epoxide hydrolase from potato.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Five cDNAs encoding a putative soluble epoxide hydrolase (sEH) from potato were isolated and characterized. The cDNAs contained open reading frames encoding 36 kDa polypeptides which were highly homologous to the carboxy terminal region of mammalian sEH. When one of the cDNAs was expressed in a

Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Leaves of 18- to 24-d-old tomato (Lycopersicon esculentum) plants exposed to gaseous methyl jasmonate (MJ) for 24 h at 30[deg]C in continuous light contained high levels of soluble protein that inhibited papain. Chromatographic analysis demonstrated that the active protein had a molecular mass of 80

Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
A multidomain cystatin was purified from the leaves of mature and seedling tomato plants (Lycopersicon esculentum, cv Bonnie Best) that had been sprayed with methyl jasmonate. For seedlings, cystatin purification was accomplished using EDTA washing, KCI extraction, 70 degrees C heat treatment,
BACKGROUND Sweet potato (Ipomoea batatas L.) is one of the most important consumed crops in many parts of the world because of its economic importance and content of health-promoting phytochemicals. METHODS With the sweet potato (Ipomoea batatas L.) as our model, we investigated the exogenous

Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The IPO (ipomoelin) gene was isolated from sweet potato (Ipomoea batatas cv Tainung 57) and used as a molecular probe to investigate its regulation by hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) after sweet potato was wounded. The expression of the IPO gene was stimulated by H(2)O(2) whether

Wound-response regulation of the sweet potato sporamin gene promoter region.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Sporamin, a tuberous storage protein of sweet potato, was systemically expressed in leaves and stems by wound stimulation. In an effort to demonstrate the regulatory mechanism of wound response on the sporamin gene, a 1.25 kb sporamin promoter was isolated for studying the wound-induced signal
Potato tubers contain a complex group of proteins of 20 to 24 kDa that exhibit homology to Kunitz-type proteinase inhibitors. We isolated three cDNAs and two genomic clones that encode members of the potato Kunitz-type proteinase inhibitor (PKPI) family. Comparison of the structures of these and
Carbon monoxide (CO), one of the haem oxygenase (HO) products, plays important roles in plant development and stress adaptation. However, the function of CO involved in wounding responses is seldom studied. A wound-inducible gene, ipomoelin (IPO), of sweet potato (Ipomoea batatas cv. Tainung 57) was
Sporamin and beta-amylase are two major proteins of tuberous storage root of sweet potato (Ipomoea batatas) and their accumulation can be induced concomitantly with the accumulation of starch in leaves and petioles by sucrose (K Nakamura, M Ohto, N Yoshida, K Nakamura [1991] Plant Physiol 96:
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge