Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

putrescine/možganska kap

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 20 rezultatov

Excessive Astrocytic GABA Causes Cortical Hypometabolism and Impedes Functional Recovery after Subcortical Stroke

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Glucose hypometabolism in cortical structures after functional disconnection is frequently reported in patients with white matter diseases such as subcortical stroke. However, the molecular and cellular mechanisms have been poorly elucidated. Here we show, in an animal model of internal capsular
We investigated changes in PA levels by the treatment of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in ischemic stroke in rat brain model and in cultured neuronal SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD). In ischemic rat model, transient middle cerebral artery

Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid beta (Aβ) proteins within the walls of the cerebral vasculature with subsequent aggressive vascular inflammation leading to recurrent hemorrhagic strokes. The objective of the study was to develop theranostic

The role of polyamine metabolism in neuronal injury following cerebral ischemia.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Stroke is a leading cause of morbidity and mortality in the US, with secondary damage following the initial insult contributing significantly to overall poor outcome. Prior investigations have shown that the metabolism of certain polyamines such as spermine, spermidine, and putrescine are elevated

Evidence for nuclear ornithine decarboxylase activity in different brain regions of the male rat.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The subcellular distribution of ornithine decarboxylating activity in nucleus caudatus putamen, hippocampus, parietal cerebral cortex, cerebellum and hypothalamus of male rat brain has been investigated. The 7000 g supernatant (cytosolic fraction), the 7000 g sediment and the 700 g sediment (nuclear
OBJECTIVE Cerebral ischemia causes activation of ornithine decarboxylase (ODC) gene and subsequent accumulation of putrescine, which might either directly or indirectly affect the outcome of cerebral infarct. We developed a transgenic rat overexpressing human ODC, which was used to explore the

Spermine is neuroprotective against anoxia and N-methyl-D-aspartate in hippocampal slices.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Polyamines were implicated as either neurotoxic or neuroprotective in several models of stroke. Spermine augments the excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptor because this receptor is activated at micromolar spermine concentrations. However, at higher concentrations,
It has been widely recognized that glutamate (Glu)-induced cytotoxicity, intracellular calcium overload and excessive free radical production are the key players in the development and progression of ischemic brain injury. Since MK-801, an antagonist of N-methyl-d-aspartate (NMDA) receptor, showed
The endogenous polyamines (spermine, spermidine, and putrescine) are present at relatively high concentrations in the mammalian brain and play crucial roles in a variety of aspects of cell functioning. Stroke is the third most common cause of death and the leading cause of disability among adults in

Neuronal and glial responses to polyamines in the ischemic brain.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The polyamines, putrescine, spermidine and spermine are present in most living cells, with the essentiality for normal cell function, cellular growth and differentiation. In the mammalian brain, polyamines are also present at relatively high concentrations with different regional distribution

[Physiological functions of polyamines and regulation of polyamine content in cells].

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Polyamines (putrescine, spermidine, and spermine) are essential for normal cell growth. The polyamine level in cells is regulated by biosynthesis, degradation, and transport. The role of antizyme on polyamine biosynthesis and transport in mammalian cells and characteristics of polyamine transport in
Reactive oxygen species (ROS) play a vital role in brain damage after cerebral ischemia-reperfusion injury, and ROS scavengers have been shown to exert neuroprotective effects against ischemic brain injury. We have recently identified

Difluoromethylornithine decreases postischemic brain edema and blood-brain barrier breakdown.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Brain polyamines have been associated with posttraumatic vasogenic edema and blood-brain barrier (BBB) breakdown seen in some models of brain injury. We hypothesized that the inhibition of the enzyme responsible for polyamine production with the decarboxylase difluoromethylornithine (DFMO) may
Focal cerebral ischaemia was induced in rats by occlusion of the left middle cerebral artery. Two days later, infarct volume was determined by magnetic resonance imaging and the concentrations of the polyamines putrescine (PU), spermine and spermidine by HPLC. In control (occluded) animals, PU

Transgenic animals as models in the study of the neurobiological role of polyamines.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Natural polyamines, putrescine, spermidine and spermine, exhibit a number of neurophysiological and metabolic effects in brain preparations. In the in vitro studies, several specific sites of action have been identified such as ion channels, transmitter release and Ca2+ homeostasis. Polyamines have
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge