Albanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2007-Mar

Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana.

Vetëm përdoruesit e regjistruar mund të përkthejnë artikuj
Identifikohuni Regjistrohu
Lidhja ruhet në kujtesën e fragmenteve
Yo Miyashita
Rudy Dolferus
Kathleen P Ismond
Allen G Good

Fjalë kyçe

Abstrakt

Alanine aminotransferase (AlaAT) catalyses the reversible transfer of an amino group from glutamate to pyruvate to form 2-oxoglutarate and alanine. The regulation of AlaAT in several plant species has been studied in response to low-oxygen stress, light and nitrogen application. In this study, induction of Arabidopsis AlaAT1 and AlaAT2 during hypoxia was observed at the transcriptional level, and an increase in enzyme activity was detected in hypoxically treated roots. In addition, the tissue-specific expression of AlaAT1 and AlaAT2 was analysed using promoter:GUS fusions. The GUS staining patterns indicated that both AlaAT genes are expressed predominantly in vascular tissues. We manipulated AlaAT expression to determine the relative importance of this enzyme in low-oxygen stress tolerance and nitrogen metabolism. This was done by analysing T-DNA mutants and over-expressing barley AlaAT in Arabidopsis. The AlaAT1 knockout mutant (alaat1-1) showed a dramatic reduction in AlaAT activity, suggesting that AlaAT1 is the major AlaAT isozyme in Arabidopsis. Over-expression of barley AlaAT significantly increased the AlaAT activity in the transgenic plants. These plants were analysed for metabolic changes over a period of hypoxic stress and during their subsequent recovery. The results showed that alaat1-1 plants accumulate more alanine than wild-type plants during the early phase of hypoxia, and the decline in accumulated alanine was delayed in the alaat1-1 line during the post-hypoxia recovery period. When alanine was supplied as the nitrogen source, alaat1-1 plants utilized alanine less efficiently than wild-type plants did. These results indicate that the primary role of AlaAT1 is to break down alanine when it is in excess. Therefore, AlaAT appears to be crucial for the rapid conversion of alanine to pyruvate during recovery from low-oxygen stress.

Bashkohuni në faqen
tonë në facebook

Baza e të dhënave më e plotë e bimëve medicinale e mbështetur nga shkenca

  • Punon në 55 gjuhë
  • Kurime bimore të mbështetura nga shkenca
  • Njohja e bimëve nga imazhi
  • Harta GPS interaktive - etiketoni bimët në vendndodhje (së shpejti)
  • Lexoni botime shkencore në lidhje me kërkimin tuaj
  • Kërkoni bimë medicinale nga efektet e tyre
  • Organizoni interesat tuaja dhe qëndroni në azhurnim me kërkimet e lajmeve, provat klinike dhe patentat

Shkruani një simptomë ose një sëmundje dhe lexoni në lidhje me barërat që mund të ndihmojnë, shtypni një barishte dhe shikoni sëmundjet dhe simptomat që përdoren kundër.
* I gjithë informacioni bazohet në kërkimin shkencor të botuar

Google Play badgeApp Store badge