Albanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2019-Dec

Heterologous expression of an acid phosphatase gene and phosphate limitation leads to substantial production of chicoric acid in Echinacea purpurea transgenic hairy roots.

Vetëm përdoruesit e regjistruar mund të përkthejnë artikuj
Identifikohuni Regjistrohu
Lidhja ruhet në kujtesën e fragmenteve
Meisam Salmanzadeh
Mohammad Sabet
Ahmad Moieni
Mehdi Homaee

Fjalë kyçe

Abstrakt

A high level of the secondary metabolite chicoric acid is produced by intracellular Pi supply and extracellular phosphate limiting in Echinacea purpurea hairy roots. Chicoric acid (CA) is a secondary metabolite which is gained from Echinacea purpurea. It has been found to be one of the most potent HIV integrase inhibitors with antioxidant and anti-inflammatory activities. However, the low-biosynthesis level of this valuable compound becomes an inevitable obstacle limiting further commercialization. Environmental stresses, such as phosphorus (Pi) deficiency, stimulate the synthesis of chemical metabolites, but significantly reduce plant growth and biomass production. To overcome the paradox of dual opposite effect of Pi limitation, we examined the hypothesis that the intracellular Pi supply and phosphate-limiting conditions enhance the total CA production in E. purpurea hairy roots. For this purpose, the coding sequence (CDS) of a purple acid phosphatase gene from Arabidopsis thaliana, AtPAP26, under CaMV-35S promoter was overexpressed in E. purpurea using Agrobacterium rhizogenes strain R15834. The transgenic hairy roots were cultured in a Pi-sufficient condition to increase the cellular phosphate metabolism. A short-term Pi starvation treatment of extracellular phosphate was applied to stimulate genes involved in CA biosynthesis pathway. The overexpression of AtPAP26 gene significantly increased the total APase activity in transgenic hairy roots compared to the non-transgenic roots under Pi-sufficient condition. Also, the transgenic hairy roots showed increase in the level of total and free phosphate, and in root fresh and dry weights compared to the controls. In addition, the phosphate limitation led to significant increase in the expression level of the CA biosynthesis genes. Considering the increase of biomass production in transgenic vs. non-transgenic hairy roots, a 16-fold increase was obtained in the final yield of CA for transgenic E. purpurea roots grown under -P condition compared to +P non-transgenic roots. Our results suggested that the expression of phosphatase genes and phosphate limitation were significantly effective in enhancing the final production yield and large-scale production of desired secondary metabolites in medicinal plant hairy roots.

Bashkohuni në faqen
tonë në facebook

Baza e të dhënave më e plotë e bimëve medicinale e mbështetur nga shkenca

  • Punon në 55 gjuhë
  • Kurime bimore të mbështetura nga shkenca
  • Njohja e bimëve nga imazhi
  • Harta GPS interaktive - etiketoni bimët në vendndodhje (së shpejti)
  • Lexoni botime shkencore në lidhje me kërkimin tuaj
  • Kërkoni bimë medicinale nga efektet e tyre
  • Organizoni interesat tuaja dhe qëndroni në azhurnim me kërkimet e lajmeve, provat klinike dhe patentat

Shkruani një simptomë ose një sëmundje dhe lexoni në lidhje me barërat që mund të ndihmojnë, shtypni një barishte dhe shikoni sëmundjet dhe simptomat që përdoren kundër.
* I gjithë informacioni bazohet në kërkimin shkencor të botuar

Google Play badgeApp Store badge