Albanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology 2018-Sep

[Seed-specific expression of heterologous gene DGAT1 increase soybean seed oil content and nutritional quality].

Vetëm përdoruesit e regjistruar mund të përkthejnë artikuj
Identifikohuni Regjistrohu
Lidhja ruhet në kujtesën e fragmenteve
Fei Zhang
Xiuqing Gao
Jingjie Zhang
Baoling Liu
Hongmei Zhang
Jinai Xue
Runzhi Li

Fjalë kyçe

Abstrakt

Enhancing soybean (Glycine max) oil production is crucial to meet the market demand of vegetable oil. Diacylglycerol acyltransferase (DGAT) catalyzes the final acylation reaction of triacylglycerol (TAG) synthesis, acting as one of the rate-limiting enzymes for oil biosynthesis in plant seeds. Here, a cDNA clone VgDGAT1A encoding the DGAT1 protein was isolated from the high oil plant Vernonia galamensis. VgDGAT1A was specifically overexpressed in soybean seeds, and several high-generation transgenic lines (T7) were obtained by continuous selection. qPCR analysis showed that VgDGAT1A was highly expressed in the mid-development stage (30-45 DAF) of the transgenic seeds. Accordingly, the DGAT enzyme activity in the transgenic seeds was increased by 7.8 folds in comparison with the wild-type controls. Seed oil and starch contents were, respectively, increased by 5.1% (Dry weight) and reduced by 2%-3% in the transgenic soybeans. Importantly, protein content was not significantly different between transgenic and control seeds. Seed weight and germination rate of the transgenic lines exhibited no negative effect. Fatty acid profiling demonstrated that antioxidant oleic acid (C18:1Δ9) content in the transgenic seed oil was elevated by 8.2% compared to the control, and correspondingly, easily-oxidized linoleic acid (C18:2Δ9,12) and linolenic acid (C18:3Δ9,12,15) were decreased by 6% and 2% respectively. Taken together, seed-specific overexpression of an exogenous VgDGAT1A gene can break the negative linkage of oil and protein contents in soybean seeds, indicating that engineering of this highly-active DGAT enzyme is an effective strategy to improve oil yield and nutritional value in oilseeds.

Bashkohuni në faqen
tonë në facebook

Baza e të dhënave më e plotë e bimëve medicinale e mbështetur nga shkenca

  • Punon në 55 gjuhë
  • Kurime bimore të mbështetura nga shkenca
  • Njohja e bimëve nga imazhi
  • Harta GPS interaktive - etiketoni bimët në vendndodhje (së shpejti)
  • Lexoni botime shkencore në lidhje me kërkimin tuaj
  • Kërkoni bimë medicinale nga efektet e tyre
  • Organizoni interesat tuaja dhe qëndroni në azhurnim me kërkimet e lajmeve, provat klinike dhe patentat

Shkruani një simptomë ose një sëmundje dhe lexoni në lidhje me barërat që mund të ndihmojnë, shtypni një barishte dhe shikoni sëmundjet dhe simptomat që përdoren kundër.
* I gjithë informacioni bazohet në kërkimin shkencor të botuar

Google Play badgeApp Store badge