Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medical Investigation 1998-Aug

A hydrolase enzyme inactivating endogenous ligands for cannabinoid receptors.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
N Ueda
S K Goparaju
K Katayama
Y Kurahashi
H Suzuki
S Yamamoto

Nyckelord

Abstrakt

Cannabinoids are psychoactive components of marijuana, and bind to specific G protein-coupled receptors in the brain and other mammalian tissues. Anandamide (arachidonoylethanolamide) was discovered as an endogenous agonist for the cannabinoid receptors. Hydrolysis of anandamide to arachidonic acid and ethanolamine results in the loss of its biological activities. The enzyme responsible for this hydrolysis was solubilized, partially purified from the microsomes of porcine brain, and referred to as anandamide amidohydrolase. In addition to the anandamide hydrolysis, the enzyme preparation catalyzed anandamide synthesis by the condensation of arachidonic acid with ethanolamine. Several lines of enzymological evidence suggested that a single enzyme catalyzes both the hydrolysis and synthesis of anandamide. This reversibility was confirmed by the use of a recombinant enzyme of rat liver overexpressed in COS-7 cells. However, in consideration of the high Km value for ethanolamine as a substrate for the anandamide synthesis, the enzyme was presumed to act as a hydrolase rather than a synthase under physiological conditions. The recombinant enzyme acted not only as an amidase hydrolyzing anandamide and other fatty acid amides but also as an esterase hydrolyzing methyl ester of arachidonic acid. 2-Arachidonoylglycerol, which was found recently to be another endogenous ligand, was also efficiently hydrolyzed by the esterase activity of the same enzyme. The anandamide hydrolase and synthase activities were detected in a variety of rat organs, and liver showed by far the highest activities. A high anandamide hydrolase activity was also detected in small intestine but only after the homogenate was precipitated with acetone to remove endogenous lipids inhibiting the enzyme activity. The distribution of mRNA of the enzyme was in agreement with that of the enzyme activity.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge