Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cerebral Blood Flow and Metabolism 1992-Jul

Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
B R Ransom
W Walz
P K Davis
W G Carlini

Nyckelord

Abstrakt

In gray matter (GM), anoxia induces prominent extracellular ionic changes that are important in understanding the pathophysiology of this insult. White matter (WM) is also injured by anoxia but the accompanying changes in extracellular ions have not been studied. To provide such information, the time course and magnitude of anoxia-induced changes in extracellular K+ concentration ([K+]o) and extracellular pH (pHo) were measured in the isolated rat optic nerve, a representative central WM tract, using ion-selective microelectrodes. Anoxia produced less extreme changes in [K+]o and pHo in WM than are known to occur in GM; in WM during anoxia, the average maximum [K+]o was 14 +/- 2.9 mM (bath [K+]o = 3 mM) and the average maximum acid shift was 0.31 +/- 0.07 pH unit. The extracellular space volume rapidly decreased by approximately 20% during anoxia. Excitability of the rat optic nerve, monitored as the amplitude of the supramaximal compound action potential, was lost in close temporal association with the increase in [K+]o. Increasing the bath glucose concentration from 10 to 20 mM resulted in a much larger acid shift during anoxia (0.58 +/- 0.08 pH unit) and a smaller average increase in [K]o (9.2 +/- 2.6 mM). The increased extracellular glucose concentration presumably provided more substrate for anaerobic metabolism, resulting in more extracellular lactate accumulation (although not directly measured) and a greater acid shift. Enhanced anaerobic metabolism during anoxia would provide energy for operation of ion pumps, including the sodium pump, that would result in smaller changes in [K+]o. These effects were probably responsible for the observation that the optic nerve showed significantly less damage after 60 min of anoxia in the presence of 20 mM glucose compared to 10 mM glucose. Under normoxic conditions, increasing bath K+ concentration to 30 mM (i.e., well beyond the level shown to occur with anoxia) for 60 min caused abrupt loss of excitability during the period of application but minimal change in the amplitude of the compound action potential following the period of exposure. The anoxia-induced increase in [K+]o, therefore, was not itself directly responsible for irreversible loss of optic nerve function. These observations indicate that major qualitative differences exist between mammalian GM and WM with regard to anoxia-induced extracellular ionic changes.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge