Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Trauma Surgery and Acute Care Open 2018

Blunt rupture of the thoracic duct after severe thoracic trauma.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Samuel R Brown
Carlos Fernandez
Robert Bertellotti
Juan Antonio Asensio

Nyckelord

Abstrakt

A 53-year-old man was admitted to our trauma center after sustaining thoracoabdominal injuries, secondary to a rear-end motor vehicle collision. As he stepped out of his vehicle, he was struck by a tractor trailer at 55 mph. The following were the initial vital signs on his arrival: heart rate 140 beats/min, blood pressure 142/80 mm Hg, respiratory rate 28 breaths/min, temperature 36.8°C, and oxygen saturation 93%. The Glasgow Coma Scale score was 15 and the Injury Severity Score was 59. He was evaluated and resuscitated per the advanced trauma life support protocols. The focused assessment with sonography for trauma examination was negative. Initial findings included bilateral chest wall and thoracic spine tenderness, subcutaneous emphysema in the chest and neck, and an unstable pelvis. He required bilateral chest tubes and a pelvic binder. CT imaging revealed a left temporal epidural hematoma, multiple facial fractures, a sternal fracture, a left scapula fracture, acromioclavicular fractures, bilateral hemopneumothoraces, pulmonary contusions, extensive pneumomediastinum compressing the right atrium, multiple rib fractures (2-10 on the left with a flail segment and 2-8 on the right) (figure 1), an unstable open-book pelvic fracture which included bilateral superior and inferior pubic rami fractures, sacral and left iliac wing fractures, and symphysis pubis diastasis.Figure 1Three-dimensional CT scan reconstruction demonstrating left-sided flail chest.The patient developed hypotension and severe respiratory distress, and was intubated. ECG revealed no dysrhythmias. Echocardiogram revealed significant left ventricular wall dysfunction consistent with myocardial contusion and right atrial compression. His troponins were also significantly elevated. He required significant resuscitation with crystalloids, blood products and vasopressors. He underwent bronchoscopy, esophagram and upper endoscopy to exclude tracheoesophageal injury, and these were negative. On hospital day 2, the patient was hemodynamically stable, and pressors were discontinued. His pelvic fractures were repaired using external fixation and sacral screws. Given his extensive left flail chest, he underwent reconstruction of his left chest wall on hospital day 5. Open reduction and internal fixation of his left ribs, 3 to 6 anteriorly and 4 to 7 posteriorly, with titanium plates was performed (figure 2). He had an epidural catheter inserted for analgesia. On postoperative day 2 after chest wall reconstruction, the patient was extubated and resumed enteral feeds. Overnight, the output from the left-sided chest tube changed from serosanguinous to milky. A sample was sent for triglycerides and lymphocyte counts confirming the diagnosis of chylothorax. His chest tube output increased to approximately 2000 mL/day. A lymphangiogram was performed with Lipiodol to diagnose the location of the chylous leak. It revealed contrast extravasation at the level of T3 to T4. An MRI was also performed to better define the anatomic course of the thoracic duct.Figure 2Postoperative chest X-ray demonstrating left chest wall reconstruction.

UNASSIGNED

Conservative management: placing the patient nulla per os (NPO), and starting total parenteral nutrition (TPN), octreotide and midodrine.Thoracic duct embolization by interventional radiology.CT-guided thoracic duct disruption.Thoracotomy with thoracic duct ligation.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge