Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurophysiology 1996-Aug

Central and reflex neuronal responses elicited by odor in a terrestrial mollusk.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
R Gervais
D Kleinfeld
K R Delaney
A Gelperin

Nyckelord

Abstrakt

1. We studied the responses to odor of a central olfactory processing organ and subsequent central outputs in the terrestrial mollusk Limax maximus. We used extracellular recording techniques and optical recording from preparations stained with a voltage-sensitive dye to characterize network responses in the central organ and whole nerve recording to characterize central odor-elicited outputs. 2. The central olfactory organ, the procerebral (PC) lobe, is a highly interconnected network of local olfactory interneurons that receives input from primary olfactory receptors. In the absence of odor the PC network is known to exhibit periodic waves of excitation and inhibition at a frequency of approximately 0.7 Hz. Here we study how different odor inputs affect the intrinsic oscillatory dynamics. 3. Odor stimulation causes the propagation of electrical activity along the lobe to transiently switch from the state with propagating waves, with typical phase shifts of one half cycle along the lobe, to a state with few or no phase differences along the lobe. The collapse of the phase gradient typically occurs without spatially localized changes in the amplitude of the oscillation, at least on the scale of our optical resolution, approximately 0.1 times the length of the lobe. In some trials, however, we resolved spatial nonuniformities in the magnitude of excitation across the lobe. 4. The collapse of the phase gradient along the lobe in response to odor stimulation is robust on a trial-by-trial basis. Further, the change in phase gradient can occur with little or no change in the frequency of oscillation, as occasionally observed in response to weak odor stimulation. 5. Typically odor stimulation causes changes in the frequency of the oscillation. Two odors, one attractive (potato) and one repellent (amyl acetate), produced different patterns of change; potato induced a transient increase in frequency, whereas amyl acetate produced an initial decrease in frequency followed by a transient increase in frequency. We do not yet know whether these frequency change patterns are unique to these specific odors or to their behavioral meaning. 6. Previous work demonstrated direct connections from the PC lobe to the buccal and pedal ganglia, centers controlling feeding and locomotion, respectively. To establish a correlation between odor-induced changes in the PC lobe and activation of such centers and subsequently effector organs, we recorded from selected central connectives and peripheral nerve roots. The dependence of odor-elicited activity recorded in connectives and nerve roots on PC integrity was assessed by measurements of odor-elicited activity before and after PC ablation. 7. Odor stimulation caused activation of multiple units in the cerebrobuccal connective. One output of the buccal ganglion, the salivary nerve, also showed odor-elicited activation of an identified unit, the slow burster. The necessity of the PC lobe for activation of the slow burster was established by measurements of odor-elicited activity before and after PC ablation. 8. Odor stimulation also caused activation of multiple units in the buccal mass retractor nerve. Activation of a fraction of these units (3 of 10) was dependent on an intact PC lobe, like the slow burster neuron in the salivary nerve. 9. Our results clearly show how stimuli may lead to changes in the spatial-temporal pattern of activity in a central circuit without changing the overall average level of activity in that circuit.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge