Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2018-Sep

Chemotype diversity of Psidium guajava L.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Tércio da Silva de Souza
Marcia Flores da Silva Ferreira
Luciano Menini
Jaqueline Rodrigues Cindra de Lima Souza
Carolina de Oliveira Bernardes
Adésio Ferreira

Nyckelord

Abstrakt

The essential oil of Psidium guajava L. has been studied for pharmacological and industrial purposes, without considering the plant's genotype regarding the heterogeneity of its composition. The present study aimed to characterize the chemotype diversity of the essential oil extracted from the leaves of 22 genotypes of P. guajava grown in two different environments in the state of Espírito Santo, Brazil, and to identify the different chemical markers present in these plants. Essential oil from the leaves of the P. guajava genotypes was extracted by hydrodistillation, and its chemical composition was analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Thirty-three compounds were identified, comprising 87.5-99.0% of the total composition, with a prevalence of sesquiterpenes in all samples. The major compounds identified consisted of (E)-trans-Caryophyllene, α-Humulene, trans-Nerolidol, β-Bisabolene, β-Bisabolol, and Hinesol, the first of which was identified as a possible chemical marker for the species. Multivariate factor analysis of the chemical composition of P. guajava oil identified three chemotypes: Commercial - PAL, SEC, PS, PET, C7, C11, and C17MI, characterized by high levels of β-Selinene, α-Selinene, Hinesol, and 14-hydroxy-epi-(E)-caryophyllene, with β-Selinene and α-Selinene as the chemical markers; C10 and C13, exhibiting high levels of Elemol, trans-Nerolidol, trans-β-Eudesmol, and (2Z, 6Z)-Farnesol, which were indicated as chemical markers, and Cortibel - C1, C2, C3, C4, C5, C6, C8, C9, C12, C14, C15, C16, C17LI, which retained high levels of α-Cedrene, cis-α-Bergamotene, α-Humulene, Humulene epoxide, epi-α-Cadinol, β-Bisabolol, and α-Bisabolol, with β-Bisabolol and α-Bisabolol as the chemical markers. The use of guava genotypes with different chemotypes, that are agronomically favorable to fruit production and essential oil exploitation adds value to the crop and renders it more sustainable. Given guava crops produce large amounts of leaf biomass, resulting from successive prunings, the extraction of their essential oil, which retains commercially valuable compounds, can be feasible.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge