Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biochemistry 2005-May

Evaluation of radioprotective activities Rhodiola imbricata Edgew--a high altitude plant.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Rajesh Arora
Raman Chawla
Ravinder Sagar
Jagdish Prasad
Surendar Singh
Raj Kumar
Ashok Sharma
Shikha Singh
Rakesh Kumar Sharma

Nyckelord

Abstrakt

The present study reports the radioprotective properties of a hydro-alcoholic rhizome extract of Rhodiola imbricata (code named REC-7004), a plant native to the high-altitude Himalayas. The radioprotective effect, along with its relevant superoxide ion scavenging, metal chelation, antioxidant, anti-lipid peroxidation and anti-hemolytic activities was evaluated under both in vitro and in vivo conditions. Chemical analysis showed the presence of high content of polyphenolics (0.971 +/- 0.01 mg% of quercetin). Absorption spectra analysis revealed constituents that absorb in the range of 220-290 nm, while high-performance liquid chromatography (HPLC) analysis confirmed the presence of four major peaks with retention times of 4.780, 5.767, 6.397 and 7.577 min. REC-7004 was found to lower lipid oxidation significantly (p < 0.05) at concentrations viz., 8 and 80 microg/ml respectively as compared to reduced glutathione, although the optimally protective dose was 80 microg/ml, which showed 59.5% inhibition of induction of linoleic acid degradation within first 24 h. The metal chelation activity of REC-7004 was found to increase concomitantly from 1 to 50 microg/ml. REC-7004 (10-50 microg/ml) exhibited significant metal chelation activity (p < 0.05), as compared to control, and maximum percentage inhibition (30%) of formation of iron-2,2'-bi-pyridyl complex was observed at 50 microg/ml, which correlated well with quercetin (34.9%), taken as standard. The reducing power of REC-7004 increased in a dose-dependent manner. The absorption unit value of REC-7004 was significantly lower (0.0183 +/- 0.0033) as compared to butylated hydroxy toluene, a standard antioxidant (0.230 +/- 0.091), confirming its high reducing ability. Superoxide ion scavenging ability of REC-7004 exhibited a dose-dependent increase (1-100 microg/ml) and was significantly higher (p < 0.05) than that of quercetin at lower concentrations (1-10 microg/ml), while at 100 microg/ml, both quercetin and REC-7004 scavenged over 90% superoxide anions. MTT assay in U87 cell line revealed an increase in percent survival of cells at doses between 25 and 125 microg/ml in case of drug + radiation group. In vivo evaluation of radio-protective efficacy in mice revealed that intraperitoneal administration of REC-7004 (maximally effective dose: 400 mg/kg b.w.) 30 min prior to lethal (10 Gy) total-body gamma-irradiation rendered 83.3% survival. The ability of REC-7004 to inhibit lipid peroxidation induced by iron/ascorbate, radiation (250 Gy) and their combination [i.e., iron/ascorbate and radiation (250 Gy)], was also investigated and was found to decrease in a dose-dependent manner (0.05-2 mg/ml). The maximum percent inhibition of formation of MDA-TBA complex at 2 mg/ml in case of iron/ascorbate, radiation (250 Gy) and both i.e., iron/ascorbate with radiation (250 Gy) was 53.78, 63.07, and 51.76% respectively and were found to be comparable to that of quercetin. REC-7004 (1 microg/ml) also exhibited significant anti-hemolytic capacity by preventing radiation-induced membrane degeneration of human erythrocytes. In conclusion, Rhodiola renders in vitro and in vivo radioprotection via multifarious mechanisms that act in a synergistic manner.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge