Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1994-Sep

Gas Exchange and Carbon Partitioning in the Leaves of Celery (Apium graveolens L.) at Various Levels of Root Zone Salinity.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
J. D. Everard
R. Gucci
S. C. Kann
J. A. Flore
W. H. Loescher

Nyckelord

Abstrakt

Both mannitol and sucrose (Suc) are primary photosynthetic products in celery (Apium graveolens L.). In other biological systems mannitol has been shown to serve as a compatible solute or osmoprotectant involved in stress tolerance. Although mannitol, like Suc, is translocated and serves as a reserve carbohydrate in celery, its role in stress tolerance has yet to be resolved. Mature celery plants exposed to low (25 mM NaCl), intermediate (100 mM NaCl), and high (300 mM NaCl) salinities displayed substantial salt tolerance. Shoot fresh weight was increased at low NaCl concentrations when compared with controls, and growth continued, although at slower rates, even after prolonged exposure to high salinities. Gas-exchange analyses showed that low NaCl levels had little or no effect on photosynthetic carbon assimilation (A), but at intermediate levels decreases in stomatal conductance limited A, and at the highest NaCl levels carboxylation capacity (as measured by analyses of the CO2 assimilation response to changing internal CO2 partial pressures) and electron transport (as indicated by fluorescence measurements) were the apparent prevailing limits to A. Increasing salinities up to 300 mM, however, increased mannitol accumulation and decreased Suc and starch pools in leaf tissues, e.g. the ratio of mannitol to Suc increased almost 10-fold. These changes were due in part to shifts in photosynthetic carbon partitioning (as measured by 14C labeling) from Suc into mannitol. Salt treatments increased the activity of mannose-6-phosphate reductase (M6PR), a key enzyme in mannitol biosynthesis, 6-fold in young leaves and 2-fold in fully expanded, mature leaves, but increases in M6PR protein were not apparent in the older leaves. Mannitol biosynthetic capacity (as measured by labeling rates) was maintained despite salt treatment, and relative partitioning into mannitol consequently increased despite decreased photosynthetic capacity. The results support a suggested role for mannitol accumulation in adaptation to and tolerance of salinity stress.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge