Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant and Cell Physiology 2002-Jul

Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Mitsutaka Taniguchi
Yojiro Taniguchi
Michio Kawasaki
Satomi Takeda
Tomohiko Kato
Shusei Sato
Satoshi Tabata
Hiroshi Miyake
Tatsuo Sugiyama

Nyckelord

Abstrakt

We characterized three Arabidopsis genes, AtpOMT1, AtpDCT1 and AtpDCT2, localized on chromosome 5 and homologous to spinach chloroplastic 2-oxoglutarate/malate transporter (OMT) gene. The yeast-expressed recombinant AtpOMT1 protein transported malate and 2-oxoglutarate but not glutamate. By contrast, the recombinant AtpDCT1 protein transported 2-oxoglutarate and glutamate at similar affinities in exchange for malate. These findings suggested that AtpOMT1 is OMT and AtpDCT1 is a general dicarboxylate transporter (DCT). The recombinant proteins could also transport oxaloacetate at the same binding sites for dicarboxylates. In particular, the AtpOMT1 had a K(m) value for oxaloacetate one order of magnitude lower than those for malate and 2-oxoglutarate. Although the transcripts for the three genes were accumulated in all tissues examined, the expression of the genes in leaf tissues was light inducible. The expression of the three genes was also induced by nitrate supplement but the induction was most prominent and transient in AtpOMT1 similar to nitrate reductase gene. These findings lead to a proposition that AtpOMT1 functions as an oxaloacetate transporter in the malate-oxaloacetate shuttle across chloroplast membranes. We identified T-DNA insertional mutants of AtpOMT1 and AtpDCT1. Although the AtpOMT1 mutants could grow normally in normal air, the AtpDCT1 mutants were non-viable under the same conditions. The AtpDCT1 mutants were able to grow under the high CO2 condition to suppress photorespiration. These findings suggested that at least AtpDCT1 is a necessary component for photorespiratory nitrogen recycling.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge