Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2015-May

Investigation of skin permeation, ex vivo inhibition of venom-induced tissue destruction, and wound healing of African plants used against snakebites.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Marianne Molander
Dan Staerk
Hanne Mørck Nielsen
Johanna M Brandner
Drissa Diallo
Chifundera Kusamba Zacharie
Johannes van Staden
Anna K Jäger

Nyckelord

Abstrakt

BACKGROUND

Snakebite envenomation causes 5000-10,000 mortalities and results in more than 5-15,000 amputations in sub-Saharan Africa alone every year. The inaccessibility of antiserum therapy is a vast problem, and only about 2.5% of the actual need for antiserum in Africa is covered. Numerous plants have shown in vitro inhibitory activity against one or more of the hydrolytic enzymes involved in snakebite-induced necrosis. However, a more thorough examination of the plant species in ex vivo and in vitro cell assay models is needed to test their ability to inhibit necrosis.

METHODS

Extracts which had previously shown in vitro inhibitory activity against necrosis enzymes, were tested in an ex vivo air-liquid-interface model, and a wound healing scratch assay as well as for their ability to permeate the skin barrier and inhibit venom induced cell death.

RESULTS

Of the 14 water extracts and 16 ethanol extracts tested at a concentration of 10 μg/mL, only the ethanol extracts of Tamarindus indica and Paullinia pinnata resulted in a small but significant increase in cell migration of around 10% compared to treatment with buffer after 24h treatment. The remaining extracts showed no effect, or they even delayed the cell migration compared to the treatment with buffer. After 48 h treatment, 10 of the tested extracts showed a decreased cell migration compared to no treatment. At a 100 μg/mL concentration all the extracts inhibited cell migration and five extracts killed some of the cells, while four extracts killed all the cells. Ten of the thirty extracts were tested in a Franz cell set-up but none of the extracts tested did permeate the skin barrier over a 48 h period, and will therefore be of very limited use topically in the initial treatment of snakebites in its present form. None of the extracts were able to directly interact with the enzyme to lower the cell toxicity of the venom. Two extracts, Dichrostachys cinerea and Grewia mollis, were tested in the ex vivo model, but none of them inhibited the tissue destruction caused by venom.

CONCLUSIONS

On the basis of this study, topical treatment with plant extracts for snakebite-induced tissue necrosis cannot be recommended.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge