Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cell Biology 1988-Jul

Isolation and characterization of monoclonal antibodies directed against plant plasma membrane and cell wall epitopes: identification of a monoclonal antibody that recognizes extensin and analysis of the process of epitope biosynthesis in plant tissues and cell cultures.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
D J Meyer
C L Afonso
D W Galbraith

Nyckelord

Abstrakt

Membranes from tobacco cell suspension cultures were used as antigens for the preparation of monoclonal antibodies. Use of solid phase and indirect immunofluorescence assays led to the identification of hybridomas producing antibodies directed against cell surface epitopes. One of these monoclonal antibodies (11.D2) was found to recognize a molecular species which on two-dimensional analysis (using nonequilibrium pH-gradient electrophoresis and SDS-PAGE) was found to have a high and polydisperse molecular mass and a very basic isoelectric point. This component was conspicuously labeled by [3H]proline in vivo. The monoclonal antibody cross-reacted with authentic tomato extensin, but not with potato lectin nor larch arabinogalactan. Use of the monoclonal antibody as an immunoaffinity reagent allowed the purification of a tobacco glycoprotein which was identical in amino acid composition to extensin. Finally, immunocytological analyses revealed tissue-specific patterns of labeling by the monoclonal antibody that were identical to those observed with a polyclonal antibody raised against purified extensin. We have concluded that monoclonal antibody 11.D2 recognizes an epitope that is carried exclusively by extensin. Analysis of cellular homogenates through differential and isopycnic gradient centrifugation revealed that biosynthesis of the extensin epitope was found on or within the membranes of the endoplasmic reticulum, Golgi region and plasma membrane. This result is consistent with the progressive glycosylation of the newly-synthesized extensin polypeptide during its passage through a typical eukaryotic endomembrane pathway of secretion. The 11.D2 epitope was not found in protoplasts freshly isolated from leaf tissues. However, on incubation of these protoplasts in appropriate culture media, biosynthesis of the epitope was initiated. This process was not impeded by the presence of chemicals that are reported to be inhibitors of cell wall production or of proline hydroxylation.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge