Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Feb

Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Mohammad Hossein Sheikh Mohammadi
Nematollah Etemadi
Mohammad Mehdi Arab
Mostafa Aalifar
Mostafa Arab
Mohammad Pessarakli

Nyckelord

Abstrakt

Drought stress is the major limiting factor which affects turfgrass management in area with restricted rainfall or irrigation water supply. Trinexapac ethyl (TE), Paclobutrazol (PAC) and Abscisic acid (ABA) are three plant growth regulators (PGRs) that are commonly used on turf species for increasing their tolerance to different environmental stresses such as drought. However, little is known about the impact of PGRs on stress tolerance of Iranian Perennial ryegrass (Lolium perenne). The present study was conducted to examine the visual and physiological changes of Iranian Perennial ryegrass in response to foliar application of TE, PAC, and ABA under drought stress conditions. According to the obtained results, application of all three PGRs considerably restored visual quality of drought exposed plants. TE treatment increased chlorophyll content, proline content and resulted in less malondialdehyde (MDA) in drought stressed Perennial ryegrass. Application of all PGRs enhanced the relative water content (RWC) and decreased the electrolyte leakage (EL) and Hydrogen peroxide contents (H2O2 content) of plants under drought stress, though the impact of TE was more pronounced. Throughout the experiment, TE- and ABA-treated plant showed greater soluble sugar (SSC) content as compared to the control. Antioxidant enzymes activities of drought exposed plants were considerably increased by PGRs application. Catalase (CAT) and Superoxide dismutase (SOD) activities were greater in TE-treated grasses followed by PAC-treated plants. Ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced by TE and ABA application. The results of the present investigation suggest that application of TE, ABA and PAC enhances drought tolerance in Perennial ryegrass. TE, PAC and ABA were all effective in mitigating physiological damages resulting from drought stress, however the beneficial effects of TE were more pronounced. The result obtained of real time-PCR suggested that regulation of CAT, APX, POD and SOD genes expression at translational levels highly depended on the application of TE, PAC and ABA. Also, the results showed that deletion mutation in SOD and POD genes were not leading to enzyme inactivation.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge