Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncology Reports 2014-May

Oleanolic acid enhances the radiosensitivity of tumor cells under mimetic hypoxia through the reduction in intracellular GSH content and HIF-1α expression.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Rongxin Qi
Wenwen Jin
Juan Wang
Qiyi Yi
Maohu Yu
Shiguo Xu
Wensen Jin

Nyckelord

Abstrakt

We previously found that oleanolic acid (OA), a naturally pentacyclic triterpenoid, enhances the radiosensitizing effect on tumor cells. However, it is unclear whether or not OA enhances the radiosensitivity of hypoxic cells. Therefore, the aim of the present study was to further observe the influence of OA on hypoxic tumor cells, and the relative mechanism was also investigated. The radiosensitivity of rat glioma C6 cells and human lung cancer A549 cells with different treatments, under mimetic hypoxia, was evaluated by clonogenic assay. A micronucleus (MN) test, meanwhile, was utilized to observe the alteration in intracellular DNA damage. For determining the mechanism involved in the OA influence on the radiosensitivity of hypoxic cells, we determined the levels of intracellular reduced glutathione (GSH) using the glutathione reductase/5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) recycling assay. Simultaneously, the activities of γ-glutamylcysteine synthetase (γ-GCS) and GSH synthase (GSS), both enzymes for GSH synthesis, were tested using appropriate methods. Due to the involvement of hypoxia inducible factor-1α (HIF-1α) in the resistence of hypoxic cells to radiation damage, its levels were also observed by western blot method. The results from this study demonstrated that the clonogenic growth of irradiated cells was increased under mimetic hypoxia while the refractory effect of hypoxic cells to radiation was decreased following OA treatment. Moreover, the (MN) frequencies in the hypoxic cells treated with OA were augmented after irradiation compared with the cells without OA treatment. In the subsequent experiment, OA significantly reduced the biosynthesis of intracellular GSH via the attenuation of γ-GCS activity. Additionally, there was an obvious reduction in HIF-1α expression in irradiated cells treated with OA at different concentrations. In conclusion, OA significantly enhanced the radiosensitivity of tumor cells under mimetic hypoxia, through the reduction in intracellular GSH content and HIF-1α expression.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge