Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant Pathology 2012-Sep

Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Marco Scortichini
Simone Marcelletti
Patrizia Ferrante
Milena Petriccione
Giuseppe Firrao

Nyckelord

Abstrakt

Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year.

METHODS

Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae.

UNASSIGNED

Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves.

METHODS

Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta.

METHODS

In green-fleshed and yellow-fleshed kiwifruits, the symptoms include brown-black leaf spots often surrounded by a chlorotic margin, blossom necrosis, extensive twig die-back, reddening of the lenticels, extensive cankers along the main trunk and leader, and bleeding cankers on the trunk and the leader with a whitish to orange ooze.

BACKGROUND

Pseudomonas syringae pv. actinidiae can effectively colonize its host plants throughout the year. Bacterial exudates can disperse a large amount of inoculum within and between orchards. In the spring, temperatures ranging from 12 to 18 °C, together with humid conditions, can greatly favour the multiplication of the bacterium, allowing it to systemically move from the leaf to the young shoots. During the summer, very high temperatures can reduce the multiplication and dispersal of the bacterium. Some agronomical techniques, as well as frost, wind, rain and hail storms, can contribute to further spreading.

RESULTS

An integrated approach that takes into consideration precise scheduled spray treatments with effective and environmentally friendly bactericides and equilibrated plant nutrition, coupled with preventive measures aimed at drastically reducing the bacterial inoculum, currently seems to be the possible best solution for coexistence with the disease. The development of resistant cultivars and pollinators, effective biocontrol agents, including bacteriophages, and compounds that induce the systemic activation of plant defence mechanisms is in progress.

BACKGROUND

Up-to-date information on bacterial canker research progress and on the spread of the disease in New Zealand can be found at: http://www.kvh.org.nz. Daily information on the spread of the disease and on the research being performed worldwide can be found at: http://www.freshplaza.it.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge