Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cosmetic Science 2017-Dec

Reinforcement of barrier function and scalp homeostasis by Senkyunolide A to fight against dandruff.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
P Mondon
C Ringenbach
E Doridot
V Genet

Nyckelord

Abstrakt

OBJECTIVE

Senkyunolide-A (SENKY) can be isolated from Apium graveolens seed oil obtained using supercritical CO2 extraction. SENKY and its parent compounds, the N-butyl phthalides, have been demonstrated to protect cells from CO poisoning, to prevent diabetes mellitus and to decrease cancer cell proliferation. This study was undertaken to evaluate in vitro and in vivo the effect of SENKY on epidermal function improvement, Malassezia effect control, scalp soothing and dandruff reduction via skin protection-related pathways.

METHODS

DNA-array and proteomic studies were performed on human keratinocytes, sebocytes and skin explants to demonstrate SENKY activities. Two clinical evaluations were performed under dermatologist control on 106 volunteers, with greasy or dry scalp, experiencing dandruff, itching and redness. Volunteers tested a shampoo followed, or not, by a leave-on, containing SENKY, or their placebos. Dandruff severity and redness were scored on the scalp. Moisturization and sebum release were recorded using relevant measuring apparatus. Itching and scratching evaluations came from volunteers' self-declarations.

RESULTS

DNA-array studies on keratinocytes showed a clear regulation of skin barrier functions and epidermis defence pathways. Upregulation of epidermal differentiation complex genes was observed. These preliminary observations were reinforced by immunocytochemistry and immunohistochemistry studies showing a significant increase of involucrin, filaggrin, loricrin, SPRR, LC3B and ceramide 2 productions. Tight-junctions and corneodesmosomes were significantly reinforced both in keratinocyte cultures (corneodesmosin, claudin, ZO-1) and in skin explants (desmoglein). DNA-array studies also demonstrated upregulation of genes involved in detoxification and anti-inflammation pathways. Proteomic studies revealed that hBD2 production was increased in keratinocytes in contact with SENKY, whereas IL-8, PGE-2 and TLR-9 releases were repressed as well as sebocyte lipid production. Clinical evaluations confirmed that after 3 weeks, SENKY significantly reduced dandruff intensity, redness, itching and scalp histamine content compared to placebo and beginning of treatment.

CONCLUSIONS

For the first time, SENKY has been shown to promote scalp homoeostasis by reinforcing barrier and defence functions at both gene and protein levels. It reduces irritation and redness in promoting detoxification and anti-inflammation pathways while controlling the niche of Malassezia. Applied on scalp, SENKY significantly reduces the formation of dandruff and soothes the scalp.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge