Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1998-Oct

The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
G Ferey-Roux
J Perrier
E Forest
G Marchis-Mouren
A Puigserver
M Santimone

Nyckelord

Abstrakt

A rapid method is proposed for isolating the two main components of human pancreatic alpha-amylase (HPA I and HPA II). The isoelectric point of HPA I (7.2), the main component, was determined using an isoelectrofocusing method and found to differ from that of HPA II (6. 6). The molecular mass of HPA I (55862+/-5 Da) and that of HPA II (55786+/-5 Da) were determined by performing mass spectrometry and found to be quite similar to that of the protein moiety calculated from the amino acid sequence (55788 Da), which indicates that the human amylase is not glycosylated. The structure of both HPA I and HPA II was further investigated by performing limited proteolysis. Two fragments with an apparent molecular mass of 41 kDa and 14 kDa were obtained by digesting the isoforms with proteinase K and subtilisin, whereas digestion with papain yielded two cleaved fragments with molecular masses of 38 kDa and 17 kDa. Proteinase K and subtilisin susceptible bonds are located in the L8 loop (A domain), while the papain cut which occurs in the presence of the calcium chelator EDTA is in the L3 loop (B domain). The kinetics of the inhibition of HPA I and HPA II by acarbose, a drug used to treat diabetes and obesity, were studied using an amylose substrate. The Lineweaver-Burk primary plots of HPA I and HPA II, which did not differ significantly, indicated that the inhibition was of the mixed non-competitive type. The secondary plots gave parabolic curves. All in all, these data provide evidence that two acarbose molecules bind to HPA. In conclusion, apart from the pI, no significant differences were observed between HPA I and HPA II as regards either their molecular mass and limited proteolysis or their kinetic behavior. As was to be expected in view of the high degree of structural identity previously found to exist between human and porcine pancreatic amylases, the present data show that the inhibitory effects of acarbose on the kinetic behavior of these two amylases are quite comparable. In particular, the process of amylose hydrolysis catalyzed by HPA as well as by PPA in both cases requires two carbohydrate binding sites in addition to the catalytic site.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge