Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fibrogenesis and Tissue Repair 2011-Jun

Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Luke Morgan-Rowe
Joanna Nikitorowicz
Xu Shiwen
Andrew Leask
Janice Tsui
David Abraham
Richard Stratton

Nyckelord

Abstrakt

BACKGROUND

Systemic sclerosis (SSc) is a chronic inflammatory autoimmune disease characterised by vascular dysfunction and damage, excess collagen deposition and subsequent organ manifestations. Vasculopathy is an early feature of the disease which leads to a chronic hypoxic environment in the tissues. Paradoxically, there is a lack of angiogenesis. We hypothesised that this may in part be due to a nonphysiological, overriding upregulation in antiangiogenic factors produced by the hypoxic tissues. We considered thrombospondin 1 (TSP-1) as a candidate antiangiogenic factor.

RESULTS

Conditioned media from human microvascular endothelial cells cultured in both normoxic and hypoxic environments were able to block endothelial cell proliferation, with the latter environment having a more profound effect. Filtration to remove > 100-kDa proteins or heparin-binding proteins from the conditioned media eliminated their antiproliferative effect. TSP-1 was expressed in high concentrations in the hypoxic media, as was vascular endothelial growth factor (VEGF). Depletion of TSP-1 from the media by immunoprecipitation reduced the antiproliferative effect. We then show that, in a dose-dependent fashion, recombinant TSP-1 blocks the proliferation of endothelial cells. Immunohistochemistry of skin biopsy material revealed that TSP-1 expression was significantly higher throughout the skin of patients with SSc compared with healthy controls.

CONCLUSIONS

Despite the environment of chronic tissue hypoxia in SSc, there is a paradoxical absence of angiogenesis. This is thought to be due in part to aberrant expression of antiangiogenic factors, including TSP-1. We have demonstrated that TSP-1 is released in high concentrations by hypoxic endothelial cells. The conditioned media from these cells is able to block proliferation and induce apoptosis in microvascular endothelial cells, an effect that is reduced when TSP-1 is immunoprecipitated out. Further, we have shown that recombinant TSP-1 is able to block proliferation and induce apoptosis at concentrations consistent with those found in the plasma of patients with SSc and that its effect occurs in the presence of elevated VEGF levels. Taken together, these data are consistent with a model wherein injured microvascular cells in SSc fail to repair because of dysregulated induction of TSP-1 in the hypoxic tissues.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge