Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computer Methods and Programs in Biomedicine 2020-Aug

Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Länken sparas på Urklipp
Pouya Namakshenas
Afsaneh Mojra

Nyckelord

Abstrakt

Background and objectives: High intensity focused ultrasound is an emerging non-invasive technique for the thermal ablation of cancer. Modeling of high intensity focused ultrasound as a method to induce hyperthermia, by considering non-equilibrium convective heat transfer has been under-represented in the previous studies. Therefore, in the present study, we aimed to study the effect of blood vessels during high intensity focused ultrasound ablation of thyroid cancer. In addition, high intensity focused ultrasound modeling was greatly improved by considering non-Fourier heat transfer.

Methods: The modified dual-phase-lag model was used for the modeling of heat transfer in thyroid cancer during the ultrasound irradiation. The model parameters were linked with the tissue's microstructure parameters. Meanwhile, an interfacial convective heat transfer was considered between the blood vessels and the extravascular matrix. The extent of the vascular region was determined using the field emission scanning electron microscopy images. The non-linear Westervelt equation was solved for the sound wave to determine the heat source for the induced hyperthermia treatment.

Results: Referring to the acoustic results, sharp-wave ripples were observed due to the inclusion of notable amplitudes of excited harmonics. The thermal results showed a maximum temperature rise of 25.08°C and 51.47°C at the powers of 5 W and 10 W using the modified dual-phase-lag model, while the Pennes model predicted a temperature rise of 28.77°C and 55.5°C at the same powers. It was also concluded that a constant blood temperature, overestimates the dissipated energy and the temperature reduction during the cooling period, as a 15% deviation in the tumor temperature was observed from the non-equilibrium state at 10.65 s exposure and 10 W power. Eventually, the calculation of the ablated volumes indicated that the volumes were up to 4.5 times larger by the Pennes model compared to the modified dual-phase-lag model.

Conclusions: It can be concluded from the results that there should be a serious concern on the high intensity focused ultrasound modeling based on the parameters of blood vessels. Based on the thermal maps, the cancerous tissue should be exposed to a higher energy level of ultrasound waves in order to cause the desired damage against the estimated energy level predicted by the Pennes model.

Keywords: High intensity focused ultrasound (HIFU); Hyperthermia; Non-Fourier heat transfer; Non-linear acoustic wave equation; Porous medium; Thermal analysis.

Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge