Sida 1 från 75 resultat
Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we
Developing seeds from Brassica oleracea (L.) var botrytis cv Sesam were examined for the ability to biosynthesize and incorporate erucic acid into triacylglycerols (TAGs). Seed embryos at mid-development contained a high concentration of erucic acid in diacylglycerols and TAGs, and substantial
Triacylglycerol lipase (EC 3.1.1.3) from rape (Brassica napus L. cv Ceres) is quite easily prepared from the 100,000 x g supernatant of cotyledon homogenates. The lipase is present in a high-molecular-mass fraction (greater than 1.5 x 10(6) dalton by gel filtration), but it can be rapidly extracted
DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil
Glycerol-3-phosphate (glycerol-3P) is a primary substrate for triacylglycerol synthesis. In the present study, changes in the levels of glycerol-3P during rape (Brassica napus L.) seed development and the influence of manipulating glycerol-3P levels on triacylglycerol synthesis were investigated.
Brassica napus (L. cv Jet Neuf) microspore-derived (BnaMD) cell suspension cultures were used to study the biochemistry and molecular biology of plant lipid metabolism. The cell suspension cultures may also be a potentially useful trait-testing tool for further improvement of oilseed rape, the
Erucic acid (22:1) was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived (MD) embryo culture system. TAGs accumulating during embryo development exhibited changes in acyl composition similar to those observed in developing zygotic
Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient
Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well
Expression of a California bay lauroyl-acyl carrier protein thioesterase (MCTE) in developing seeds of transgenic oilseed rape alters the fatty acid composition of the mature seed, resulting in up to 60 mol% of laurate in triacylglycerols. In this study, we examined the metabolism of lauric acid and
The native lipid composition and the capacity of cell-free extracts to biosynthesize acyl lipids in vitro were determined for the first time using the recently reported microspore-derived (MD) embryo system from the Brassica campestris low erucic acid line BC-2 (Baillie et al. 1992). The total lipid
In Brassica anthers during microsporogenesis, the tapetum cells contain two abundant lipid-rich organelles, the tapetosomes possessing oleosins and triacylglycerols (TAGs), and the elaioplasts having unique polypeptides and neutral esters. B. campestris, for its simplicity of possessing only the AA
Recent studies have shown that it is possible to engineer substantial increases in triacylglycerol (TAG) content in plant vegetative biomass, which offers a novel approach for increasing the energy density of food, feed, and bioenergy crops or for creating a sink for the accumulation of unusual,
The effects of cabbage leaf protein concentrate (CLPC) on serum and liver lipid concentrations were determined in rats fed cholesterol-enriched and cholesterol-free diets. In rats fed the cholesterol-enriched diet with CLPC, total cholesterol, triacylglycerol and phospholipid concentrations in both
BACKGROUND
Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were