Sida 1 från 19 resultat
Cesium as an alkali element exhibits a chemical reactivity similar to that of potassium, an essential element for plants. It has been suggested that Cs phytotoxicity might be due either to its competition with potassium to enter the plant, resulting in K starvation, or to its intracellular
Arabidopsis thaliana BRANCHING ENZYME 1 (AtBE1) is a chloroplast-localized embryo-lethal gene previously identified in knockout mutants. AtBE1 is thought to function in carbohydrate metabolism; however, this has not been experimentally demonstrated. Chlorosis is a typical symptom of cesium (Cs)
Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were
MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as
It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant
Incidents at the Fukushima and Chernobyl nuclear power stations have resulted in widespread environmental contamination by radioactive nuclides. Among them, 137cesium has a 30 year half-life, and its persistence in soil raises serious food security issues. It is therefore important to prevent
Cesium has no known beneficial effects on plants and while plants have the ability to absorb it through the root system, plant growth is retarded at high concentrations. Recently, we have shown that potassium influx through a potassium channel complex AKT1-KC1 is inhibited by cesium in Arabidopsis
Potassium (K(+)) is an essential mineral nutrient for plant growth and development, with numerous membrane transporters and channels having been implicated in the maintenance and regulation of its homeostasis. The cation cesium (Cs(+)) is toxic for plants but shares similar chemical properties to
Tissue preservation is a minimal requirement for the success of plant RNA and protein expression studies. The standard of snap-freezing in liquid nitrogen is not always practical or possible. RNAlater, a concentrated solution of ammonium and cesium sulfates, has become a standard preservative in the
Although cesium is known to be absorbed by plants, the pathway by which cesium enters has not been identified. We found that the AtKUP/HAK/KT9 gene from Arabidopsis thaliana was functionally expressed in a potassium transport-deficient Escherichia coli mutant. AtKUP/HAK/KT9 mediated potassium uptake
Cesium (Cs+) is known to compete with the macronutrient potassium (K+) inside and outside of plants and inhibit plant growth at high concentrations. However, the detailed molecular mechanisms of how Cs+ exerts its deleterious effects on K+ accumulation in plants are not fully elucidated. Here, we
Cesium (Cs) is chemically similar to potassium (K). However, although K is an essential element, Cs is toxic to plants. Two contrasting hypotheses to explain Cs toxicity have been proposed: (1) extracellular Cs+ prevents K+ uptake and, thereby, induces K starvation; and (2) intracellular Cs+
Phytoremediation is optimized when plants grow vigorously while accumulating the contaminant of interest. Here we show that sulphur supply alleviates aerial chlorosis and growth retardation caused by cesium stress without reducing cesium accumulation in Arabidopsis thaliana. This alleviation
Indian mustard (Brassica juncea L.) was more tolerance to Cs than some sensitive plants, such as Arabidopsis thaliana and Vicia faba, and may have a special detoxification mechanism. In this study, the effects on reactive oxygen species (ROS) content, the antioxidant enzyme system and chelation
KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels