Swedish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glioma/hypoxia

Länken sparas på Urklipp
Sida 1 från 1001 resultat
The mortality of patients with malignant gliomas remains high despite the advancement in multi-modal therapy including surgery, radio- and chemotherapy. Glioma stem cells (GSCs), sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas
Up-regulation of vascular endothelial growth factor (VEGF) expression is a major event leading to neovascularization in malignant gliomas. Hypoxia is believed to be the crucial environmental stimulus for this up-regulation. To critically assess this hypothesis, we asked whether the mechanisms

Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Treatment of malignant glioma is a challenge facing cancer therapy. In addition to surgery, and chemotherapy, radiotherapy (RT) is one of the most effective modalities of glioma treatment. However, there are two crucial challenges for RT facing malignant glioma therapy: first, gliomas are known to

Loss of cell-matrix contact increases hypoxia-inducible factor-dependent transcriptional activity in glioma cells.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
In a variety of malignomas, the acquisition of a mesenchymal phenotype has been linked with anchorage-independent growth and invasiveness. To some extent, glioma cells are able to survive a loss of cell-matrix contact. We here describe that non-adherent culture of glioma cells was accompanied by an

CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
The cancer stem cell (CSC) marker CD133 is widely expressed in gliomas and employed mostly by use of the CD133/1 antibody which binds the extracellular glycosylated AC133 epitope. CD133 recognition may, however, be affected by its glycosylation pattern and oxygen tension. The present study
The standard treatment for Glioblastoma multiforme (GBM) is surgical resection and subsequent radiotherapy and chemotherapy. Surgical resection of GBM is typically restricted because of its invasive growth, which results in residual tumor cells including glioma stem cells (GSCs) and differentiated
Multidrug resistance (MDR) is a significant problem underlying the poor prognosis associated with gliomas. Hypoxia-inducible factor-1alpha (HIF-1alpha) is thought to induce the genes expression involved in MDR. To evaluate the effect of silencing HIF-1alpha in human glioma T98G cells, cells were

IDH1(R132H) mutation increases U87 glioma cell sensitivity to radiation therapy in hypoxia.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
OBJECTIVE IDH1 codon 132 mutation (mostly Arg132His) is frequently found in gliomas and is associated with longer survival. However, it is still unclear whether IDH1 mutation renders the cell more vulnerable to current treatment, radio- and chemotherapy. METHODS We transduced U87 with wild type IDH1

CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
BACKGROUND Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell

Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Hypoxia commonly occurs in solid tumors of the central nervous system (CNS) and often interferes with therapies designed to stop their growth. We found that pediatric high-grade glioma (HGG)-derived precursors showed greater expansion under lower oxygen tension, typical of solid tumors, than normal
One of the most sensitive hypoxia detection methods is based on the observation that binding of nitroimidazoles to cellular macromolecules occurs as a result of hypoxia-dependent bioreduction by cellular nitroreductases. Nitroimidazole-binding techniques provide measurements of hypoxia to virtually
OBJECTIVE The purpose of this study was to examine: 1) the association between the expression of the insulin receptor (INSR), insulin receptor substrate 1 (IRS1) and 2 (IRS2), insulin inducible gene 1 (INSIG1) and 2 (INSIG2), Ras-related associated with diabetes (RRAD), and brain-specific
Our previous study demonstrated that mutant IkappaBalpha (IkappaBalphaM) could inhibit glioma angiogenesis and tumorigenesis through the downregulation of vascular endothelial growth factor (VEGF) and IL-8. However, the pathways involved in VEGF expression are not well understood. Growing evidence

Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
BACKGROUND Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that

Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 promotes hypoxia-induced glioma migration and invasion.

Endast registrerade användare kan översätta artiklar
Logga in Bli medlem
Poor prognosis of glioblastoma multiforme is strongly associated with the ability of tumor cells to invade the brain parenchyma, which is believed to be the major factor responsible for glioblastoma recurrence. Therefore, identifying the molecular mechanisms driving invasion may lead to the
Gå med på vår
facebook-sida

Den mest kompletta databasen med medicinska örter som stöds av vetenskapen

  • Fungerar på 55 språk
  • Växtbaserade botemedel som stöds av vetenskap
  • Örter igenkänning av bild
  • Interaktiv GPS-karta - märka örter på plats (kommer snart)
  • Läs vetenskapliga publikationer relaterade till din sökning
  • Sök efter medicinska örter efter deras effekter
  • Organisera dina intressen och håll dig uppdaterad med nyheterna, kliniska prövningar och patent

Skriv ett symptom eller en sjukdom och läs om örter som kan hjälpa, skriv en ört och se sjukdomar och symtom den används mot.
* All information baseras på publicerad vetenskaplig forskning

Google Play badgeApp Store badge