Sida 1 från 45 resultat
Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate
Okadaic acid, a potent tumor promoter and an inhibitor of protein phosphatase 1 and 2A, has also been characterized as an angiogenic inducer in the chorioallantoic membrane of the chick embryo. To elucidate the roles of okadaic acid on angiogenic processes, we conducted in vitro angiogenesis assays.
Alzheimer's disease (AD) is the most common cause of progressive decline of memory function in aged humans. To study about a disease mechanism and progression, animal models for the specific disease are needed. For AD, although highly valid animal models exist, none of the existing models
Vasodilator responses induced by okadaic acid were investigated in isolated pig coronary artery and dog basilar artery precontracted with high K. Okadaic acid showed the relaxing effect at the concentrations above 3 x 10(-7)M. The relaxation was not inhibited by the treatment with various receptor
A study with DNA microarrays was performed to investigate the effects of two diarrhetic and one azaspiracid shellfish poison, okadaic acid (OA), dinophysistoxin-1 (DTX-1) and azaspiracid-1 (AZA-1) respectively, on the whole-genome mRNA expression of undifferentiated intestinal Caco-2 cells.
Hypoxia regulates neuronal ion channels, sometimes resulting in seizures. We evaluated the effects of brief sustained hypoxia (1% O(2), 4h) on voltage-gated calcium channels (VGCCs) in cultured rat primary cortical neurons. High-voltage activated (HVA) Ca(2+) currents were acquired immediately after
Perioperative cerebral ischemia/hypoxia could induce hippocampal injury and has been reported to induce cognitive impairment. In this study, we used cobalt chloride (CoCl2) to build a hypoxia model in mouse hippocampal cell lines. Propofol, a widely used intravenous anesthetic agent, has been
The glucose regulated proteins (GRPs) are major structural components of the endoplasmic reticulum (ER) and are involved in the import, folding, and processing of ER proteins. Expression of the glucose regulated proteins (GRP78 and GRP94) is greatly increased after cells are exposed to stress agents
Bnip3 is a proapoptotic member of the Bcl-2 family of death-regulating proteins that promote the intrinsic pathway of programmed cell death. The Bnip3 death program requires membrane insertion through an N-terminal transmembrane domain that directs the protein to mitochondrial and endoplasmic
Tau is a microtubule-associated protein which is regulated by phosphorylation. Highly phosphorylated tau does not bind microtubules and is the main component of the paired helical filaments seen in Alzheimer's and related neurodegenerative diseases. Recent reports suggested that patterns of tau
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased
The effects of hypoxia and phosphatase inhibitors on connexin43 (Cx43) phosphorylation state, gap junctional intercellular communication (GJIC) and immunolabelling with anti-Cx43 antibodies were investigated in cultured astrocytes. Astrocytes contained predominantly phosphorylated forms of Cx43 and
Given the important relationship between O2 and iron (Fenton chemistry) a study was undertaken to characterize the effects of hypoxia, as well as subsequent reoxygenation, on the iron-regulatory proteins 1 and 2 (IRP1 and IRP2) in a rat hepatoma cell line. IRP1 and IRP2 are cytosolic RNA-binding
In a recent study, we demonstrated that vagal stimulation increases the survival of rats with myocardial infarction by inhibiting lethal arrhythmia through regulation of connexin43 (Cx43). However, the precise mechanisms for this effect remain to be elucidated. To investigate these mechanisms and
Several lines of evidence indicate that transduction of the hypoxic stimulus at the carotid body involves an increase in cytosolic Ca2+ ([Ca2+]i) via activation of voltage-gated Ca2+ channels in the glomus cells. However, reported responses to hypoxia include either no effect on or inhibition of