Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant Pathology 2013-Aug

A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Su-Min Kim
Chungyun Bae
Sang-Keun Oh
Doil Choi

Maneno muhimu

Kikemikali

Metacaspases, which belong to the cysteine-type C14 protease family, are most structurally similar to mammalian caspases than any other caspase-like protease in plants. Atmc9 (Arabidopsis thaliana metacaspase 9) has a unique domain structure, and distinct biochemical characteristics, such as Ca²⁺ binding, pH, redox status, S-nitrosylation and specific protease inhibitors. However, the biological roles of Atmc9 in plant-pathogen interactions remain largely unknown. In this study, a metacaspase gene present as a single copy in the pepper genome, and sharing 54% amino acid sequence identity with Atmc9, was isolated and named Capsicum annuum metacaspase 9 (Camc9). Camc9 encodes a 318-amino-acid polypeptide with an estimated molecular weight of 34.6 kDa, and shares approximately 40% amino acid sequence identity with known type II metacaspases in plants. Quantitative reverse transcription-polymerase chain reaction analyses revealed that the expression of Camc9 was induced by infections of Xanthomonas campestris pv. vesicatoria race 1 and race 3 and treatment with methyl jasmonate. Suppression of Camc9 expression using virus-induced gene silencing enhanced disease resistance and suppressed cell death symptom development following infection with virulent bacterial pathogens. By contrast, overexpression of Camc9 by transient or stable transformation enhanced disease susceptibility and pathogen-induced cell death by regulation of reactive oxygen species production and defence-related gene expression. These results suggest that Camc9 is a possible member of the metacaspase gene family and plays a role as a positive regulator of pathogen-induced cell death in the plant kingdom.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge