Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 1995-Aug

A short period of hypoxia produces a rapid and transient rise in [K+]e in rat hippocampus in vivo which is inhibited by certain K(+)-channel blocking agents.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
T S Zetterström
R D Vaughan-Jones
D G Grahame-Smith

Maneno muhimu

Kikemikali

Extracellular potassium concentrations, [K+]e, were measured in vivo in the rat dorsal hippocampus using valinomycin-based double-barrelled ion-selective microelectrodes. Experiments were conducted under chloral hydrate anaesthesia. The microelectrodes were implanted stereotaxically, after which different gas mixtures were administered by inhalation. Transient hypoxia was induced by changing the inspired gas from 20% O2/80% N2 to 10-0% O2/90-100% N2 for 0.5-2 min. Resting [K+]e in the dorsal hippocampus was 3.4 +/- 0.09 mM; 0.5, 1 or 2 min of 100% N2 administration caused a rapid rise of [K+]e to 0.75, 1.9 and 15 mM, respectively. Following 0.5 min of 100% N2, the switch back to 20% O2/80% N2 produced an almost instantaneous return to normal levels. The return of [K+]e to basal levels was more delayed after 1 or 2 min of 100% N2 inhalation. The rise of hippocampal [K+]e induced by hypoxia was influenced by body temperature, the increase being five-fold higher in rats whose body temperature was raised from 33 to 37 degrees C using a heating blanket. Three potassium-channel blocking agents, quinine, 4-aminopyridine and gliquidone, were tested for their action on the increase in [K+]e, induced by inhalation of 100% N2 for 0.5 min. Both 4-aminopyridine and quinine, administered systemically, attenuated the anoxia-induced rise in [K+]e by 70 and 35%, respectively. In contrast, gliquidone, given by intracerebroventricular injection, had no effect, suggesting that ATP-sensitive potassium channels are not involved in this very early change in [K+]e.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge