Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncotarget 2017-Jan

Aromatase inhibitor-induced bone loss increases the progression of estrogen receptor-negative breast cancer in bone and exacerbates muscle weakness in vivo.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Laura E Wright
Ahmed A Harhash
Wende M Kozlow
David L Waning
Jenna N Regan
Yun She
Sutha K John
Sreemala Murthy
Maryla Niewolna
Andrew R Marks

Maneno muhimu

Kikemikali

Aromatase inhibitors (AIs) cause muscle weakness, bone loss, and joint pain in up to half of cancer patients. Preclinical studies have demonstrated that increased osteoclastic bone resorption can impair muscle contractility and prime the bone microenvironment to accelerate metastatic growth. We hypothesized that AI-induced bone loss could increase breast cancer progression in bone and exacerbate muscle weakness associated with bone metastases. Female athymic nude mice underwent ovariectomy (OVX) or sham surgery and were treated with vehicle or AI (letrozole; Let). An OVX-Let group was then further treated with bisphosphonate (zoledronic acid; Zol). At week three, trabecular bone volume was measured and mice were inoculated with MDA-MB-231 cells into the cardiac ventricle and followed for progression of bone metastases. Five weeks after tumor cell inoculation, tumor-induced osteolytic lesion area was increased in OVX-Let mice and reduced in OVX-Let-Zol mice compared to sham-vehicle. Tumor burden in bone was increased in OVX-Let mice relative to sham-vehicle and OVX-Let-Zol mice. At the termination of the study, muscle-specific force of the extensor digitorum longus muscle was reduced in OVX-Let mice compared to sham-vehicle mice, however, the addition of Zol improved muscle function. In summary, AI treatment induced bone loss and skeletal muscle weakness, recapitulating effects observed in cancer patients. Prevention of AI-induced osteoclastic bone resorption using a bisphosphonate attenuated the development of breast cancer bone metastases and improved muscle function in mice. These findings highlight the bone microenvironment as a modulator of tumor growth locally and muscle function systemically.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge