Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physical Chemistry B 2016-Feb

Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Suvamay Jana
Anne Grethe Hamre
Patricia Wildberger
Matilde Mengkrog Holen
Vincent G H Eijsink
Gregg T Beckham
Morten Sørlie
Christina M Payne

Maneno muhimu

Kikemikali

Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of Serratia marcescens family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the "entrances" of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge