Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Marine Pollution Bulletin 2005

Assessment of variables controlling nitrate dynamics in groundwater: is it a threat to surface aquatic ecosystems?

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
V Rasiah
J D Armour
A L Cogle

Maneno muhimu

Kikemikali

The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge