Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Cycle 2012-May

Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Jing Zhang
Kenneth B Storey

Maneno muhimu

Kikemikali

The wood frog (Rana sylvatica) is one of only a few vertebrate species that can survive extensive freezing of its body fluids during the winter. The mechanisms of natural freeze tolerance include metabolic rate depression to conserve energy and the implementation of cryoprotective strategies, especially the synthesis of huge amounts of glucose as a cryoprotectant. Liver is the main source of glucose production/export (and other cryoprotective actions) and plays a central role in freezing survival of the whole animal. Freezing is a multi-component stress that includes anoxia/ischemia due to the cessation of blood flow and dehydration of cells caused by ice accumulation in extracellular spaces. To help endure these stresses, cells need to suppress and reprioritize ATP-expensive cell functions. One of these is cell growth and proliferation, and we hypothesized that cell cycle arrest would be key to freezing survival. The present study examines the responses by key cell cycle components to freezing, anoxia and dehydration stresses in wood frog liver. Immunoblotting was used to investigate protein expression of Cdc 2, Cdks (2, 4, 6), and cyclins (A, B1, D1, E) as well as the phosphorylation states of Cdks (Thr14/Tyr15), the phosphatases Cdc25a (Ser76) and Cdc25c (Ser216) and the CIP/KIP Cdk inhibitors p21 (Thr145) and p27 (Thr187). Responses to 24 h freezing, 24 h anoxia and 40% dehydration as well as recovery from these stresses were analyzed. The results showed very similar responses by cell cycle components to anoxia or dehydration and were consistent with cell cycle suppression under stress and reversal during recovery. Freezing showed elements of cell cycle suppression, including reduced protein levels of Cdks and cyclins A and B1, but also showed unique responses by cyclin D1, Cdc25 phosphatases and p21/p27. These may be linked with alternative actions by these proteins that contribute to cryoprotection; e.g., an alternative action of cyclin D1 as a transcription factor may contribute to the upregulation of glucose-6-phosphatase, a key enzyme needed for the export of glucose cryoprotectant.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge