Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research 1998-Jul

Direct measurement of oxygen free radicals during in utero hypoxia in the fetal guinea pig brain.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
D Maulik
Y Numagami
S T Ohnishi
O P Mishra
M Delivoria-Papadopoulos

Maneno muhimu

Kikemikali

The present study tested the hypothesis that maternal hypoxia induces oxygen free radical generation in the fetal guinea pig brain utilizing techniques of electron spin resonance spectroscopy and alpha-phenyl-tert-butyl nitrone (PBN) spin trapping. Pregnant guinea pigs of 60 days gestation were divided into normoxic and hypoxic groups and exposed to 21% or 7% oxygen for 60 min. Free radical generation was documented by measuring the signal of PBN spin adducts. Fluorescent compounds were determined as an index of lipid peroxidation and the activity of Na+,K+-ATPase was determined as an index of brain cell membrane function. Hypoxic fetal cerebral cortical tissue showed a significant increase in spin adducts (normoxic: 33.8+/-9.3 units/g tissue vs. hypoxic: 57.9+/-9.2 units/g tissue, p<0.01) and fluorescent compounds (normoxic: 0.639+/-0.054 microg quinine sulfate/g brain vs. 0.810+/-0.102 microg quinine sulfate/g brain, p<0.01) and a decrease in Na+,K+-ATPase activity (normoxic: 43.04+/-2.50 micromol Pi/mg protein/h vs. hypoxic: 33. 80+/-3.51 micromol Pi/mg protein/h, p<0.001). These results demonstrate an increased free radical generation during hypoxia in the fetal guinea pig brain. The spectral characteristics of the radicals were consistent with those of alkoxyl radicals. The increased level of fluorescent compounds and decreased activity of Na+,K+-ATPase indicated hypoxia induced brain cell membrane lipid peroxidation and dysfunction, respectively. These results directly demonstrate an increased oxygen free radical generation during hypoxia and suggest that hypoxia-induced increase in lipid peroxidation and decrease in membrane function, as indicated by a decrease in Na+,K+-ATPase activity, are consequences of increased free radicals. The nature of predominantly present alkoxyl radical indicates ongoing lipid peroxidation during hypoxia. The direct demonstration of oxygen free radical generation during hypoxia is the critical missing link in the mechanism of hypoxia-induced brain cell membrane dysfunction and damage.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge